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Preface

Effective management of watersheds and ecosystems requires a comprehensive knowledge of
hydrologic processes, and impacts of point-source and non-point source pollution on water
quality. Simulation models are being used increasingly to provide predictive capability in
support of environmental and water resource assessment and restoration projects. However,
the models used are often based on simplifications to complex hydrologic and transport
processes. Such models incorporate restrictive assumptions pertaining to spatial variability,
dimensionality and the interactions between various components of the flow and transport
processes. Realizing the limitations of current models for complex, real-world applications,
HydroGeoSphere , a 3-D fully-integrated surface and subsurface flow simulator, was
developed. The HydroGeoSphere model is an outcome of more than two decades of
research and development under the leadership of Dr. Edward Sudicky and Dr. Peter
Forsyth at the University of Waterloo and Dr. Rene Therrien at Laval University. The
HydroGeoSphere code provides a rigorous simulation capability that combines fully-
integrated hydrologic/water quality/subsurface flow and transport capabilities with a well-
tested set of user-programmable interface tools.

A unique feature in HydroGeoSphere is that when the flow of water is simulated in a fully-
integrated mode, water derived from rainfall inputs is allowed to partition into components
such as overland and stream flow, evaporation, infiltration, recharge and subsurface discharge
into surface water features such as lakes, streams and wetlands in a natural, physically-based
fashion. That is, the fully-coupled numerical solution approach allows the simultaneous
solution of both the surface and variably-saturate subsurface flow regimes at each time step.
This approach also permits dissolved solutes and thermal energy to be naturally exchanged
between the surface and subsurface flow domains. The solute and thermal energy transport
equations are also solved simultaneously at each timestep in both regimes. This makes
HydroGeoSphere a unique and ideal tool to simulate the movement of water, energy and
solutes within watersheds in a realistic, physically-based manner.

HydroGeoSphere uses the control volume finite element approach to simulate coupled
surface and subsurface flow and transport. Fully 3-D simulations of variably-saturated
fractured or granular aquifers may be performed. HydroGeoSphere provides several
discretization options ranging from simple rectangular domains to irregular domains with
complex geometry and layering. Mixed element types provide an efficient mechanism
for simulating flow and transport processes in discrete features such as fractures (2-D
rectangular or triangular elements), pumping/injection wells, streams or tile drains (1-D
line elements). External flow stresses can include specified rainfall rates, evapotranspiration,
snow melt and aquifer pumping or injection. External transport fluxes can include specified
concentrations and mass fluxes, ambient air temperatures and incoming short and long-wave
solar radiation. The HydroGeoSphere model also includes the capability to handle the
dissolution of light and dense nonaqueous phase liquids from contaminant releases into the
subsurface, as well as the degradation and fate of multiple contaminant species emitted
from source zones. HydroGeoSphere includes options for adaptive-time stepping and
output control procedures and an ILU-preconditioned Krylov subspace sparse iterative
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matrix solution package. A Newton–Raphson linearization package provides improved
robustness. HydroGeoSphere is written in Fortran and is compiled by the Intel Visual
Fortran® compiler. It will run without modification on any Microsoft Windows® or Linux
based platforms with sufficient RAM. HydroGeoSphere has also been parallelized using
OpenMP for execution on widely-available shared-memory architectures.

This manual describes the physical and mathematical concepts underlying HydroGeo-
Sphere and the implementation of these concepts in the numerical model.
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Chapter 1

Introduction

1.1 General

A diverse group of problems exists that requires quantification of the entire hydrologic cycle
by integrated simulation of water flow, contaminant and thermal energy migration in the
surface and subsurface regimes. Increased demand on limited resources for potable water and
other purposes has driven the development of innovative management practices including
water recycling, drainage water reuse for salt-tolerant crops, conjunctive use of surface and
subsurface water resources, maintenance of ecosystems and artificial recharge of subsurface
aquifers during wet periods. A quantification of available water within the hydrologic system
and the impacts of withdrawals is essential for addressing these complex water management
issues. The complex cycle of irrigation, evaporation, infiltration, discharge to nearby lakes,
rivers, and streams, and aquifer pumping, needs to be quantified to resolve supply and
demand issues. Concerns over drying and restoration of wetlands or the effects of subsurface
water withdrawals on surface water features also require an integrated, fully-coupled analysis
of the various flow regimes. Ecosystems of lakes, rivers, and wetlands depend on certain
minimum flows as do hydropower generation, recreational use, and downstream water users.
Regulating water use in hydraulically-connected surface water bodies and surficial aquifer
systems necessitates an understanding of surface/subsurface water interactions and overall
seasonal hydrologic cycle behavior.

Since the early 1970s, there has been an evolution of hydrologic models for single-event
and continuous simulations of rainfall-runoff processes. Earlier models quantify various
hydrologic components using simplified procedures (including a unit hydrograph method,
empirical formulas, system lumping, and analytical equations) that are incapable of describing
flow physics and contaminant and thermal energy transport in any detail. In the past,
numerical models based on complex multi-dimensional governing equations have not received
much attention because of their computational, distributed input and parameter estimation
requirements. Today, with the availability of powerful personal computers and multi-processor
workstations, efficient computational methods, and sophisticated GIS, remote sensing and
advanced visualization tools, the hydrologic community is realizing the tremendous potential
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CHAPTER 1. INTRODUCTION 2

and utility of physically-based numerical simulators. As pointed out by Woolhiser (1996,
p. 126), “there seems to be little disagreement regarding the usefulness of physically-based
models for understanding hydrologic systems.” Models of this type are widely held to offer
the greatest opportunity to examine hydrologic impact of land use change (Refsgaard, 1997;
Senarath et al., 2000). Distributed hydrologic models also have immense potential and
utility for “forecasting the movement of pollutants and sediments” (Beven, 1985).

The resulting model, which we call HydroGeoSphere, is documented herein. Provided in
the following chapters are detailed descriptions and formulations of the various components
of the model.

HydroGeoSphere is supported by a flexible, user-friendly programmable interface that
may be used to seamlessly prepare input data sets, or visualize and interpret simulation
results.

1.2 Integrated Hydrologic Model Conceptualization

HydroGeoSphere is based on a rigorous conceptualization of the hydrologic system
comprising surface and subsurface flow regimes with interactions. The model is designed to
take into account all key components of the hydrologic cycle (Figure 1.1). For each time
step, the model solves surface and subsurface flow, mass and energy transport equations
simultaneously and provides complete water balance and solute budgets. Referring to
Figure 1.1, the surface water budget can be written as:

P = (QS2 −QS1)−QGS + ETS +QWS + ∆SS/∆t (1.1)

and the subsurface water budget as:

I = (QG2 −QG1) +QGS + ETG +QWG + ∆SG/∆t (1.2)

giving the total hydrologic budget as the sum of Equations 1.1 and 1.2:

P = (QS2 −QS1) + (QG2 −QG1) + (ETS + ETG) + (QWS +QWG ) + (∆SS + ∆SG)/∆t
(1.3)

where P is the net precipitation (actual precipitation - interception), QS1 and QS2 are the
surface water inflow and outflow, QGS is the surface/subsurface water interactive flow, ETS
is the evapotranspiration from the surface flow system, QWS is the overland water withdrawal,
∆SS is the surface water storage over time step ∆t, QG1 and QG2 are the subsurface water
inflow and outflow, ETG is the evapotranspiration from the subsurface flow system, QWG is
the subsurface water withdrawal and ∆SG is the subsurface water storage over time step ∆t.

In order to accomplish the integrated analysis, HydroGeoSphere utilizes a rigorous, mass
conservative modeling approach that fully couples the surface flow and transport equations
with the 3-D, variably-saturated subsurface flow and transport equations. This approach
is significantly more robust than previous conjunctive approaches that rely on linkage of
separate surface and subsurface modeling codes.
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Figure 1.1: Regional Hydrologic Cycle (adapted from Viessman Jr. and Lewis (1996)).
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1.3 HydroGeoSphere Formulation

HydroGeoSphere uses the two-dimensional, depth-integrated diffusion-wave approximation
of the Saint Venant equation for surface water flow (Viessman Jr. and Lewis, 1996), thereby
neglecting the inertial terms of the momentum equation. An integrated hydrologic analysis
is accomplished by the coupled solution of the diffusion-wave equation governing 2-D
(areal) surface water flow and the Richards’ equation governing 3-D unsaturated/saturated
subsurface flow. For problems that also involve solute or thermal energy transport, the
classical advection-dispersion equation is used in all domains.

The surface and subsurface flow and transport domains are discretized simultaneously as
shown in Figure 1.2. The gridding options for 2-D surface flow and transport include the
depicted rectangular grid that allows variable grid spacing, as well as a triangular grid option
for geometric flexibility. The coupled surface and subsurface domains consist of: (1) a single
layer of surface nodes, shown by triangles in Figure 1.2, situated on the land surface, (2)
layers of subsurface soil and aquifer nodes, shown by circles, representing the vadose zone,
subsurface aquifers and aquitards, and (3) a set of one-dimensional line elements, shown by
squares, representing surficial channels, wells, tile drains, storm and sanitary drains, water
mains or other linear features. The 2-D surface flow grid is draped over the subsurface 3-D
mesh to maintain the areal topography of the land surface and to ensure that the nodes in
the surface grid are coincident with those at the top of the subsurface mesh.

The 3-D saturated-unsaturated flow and transport equations for the vadose and saturated
zones are solved using the control volume finite element method. The top layer of surface
nodes discretizes the 2-D surface flow regime, which is assembled into the matrix equations in
a fully-implicit manner using a diffusion-wave approximation to the Saint Venant equations.
Two methods are used to couple the two flow and transport domains. The first uses a
numerical superposition principle whereby the top layer of nodes represents both surface
and subsurface domains. The second method uses Darcy flux (for flow) and Fickian (for
transport) relations to transfer water from the surface nodes to the first layer of subsurface
nodes (or vice versa), with the assumption that they are separated by a (possibly) thin
boundary layer across which the leakance occurs. A single system of matrix equations arising
from both discretized flow and transport regimes is then assembled for the entire hydrologic
setting with appropriate boundary conditions being applied to the combined system. The
fully-integrated set of nonlinear discrete equations is linearized using Newton-Raphson
schemes, and is solved simultaneously in an iterative fashion at every time step.
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Figure 1.2: Integrated Numerical Simulation of a Hydrologic System.
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1.4 Attributes of HydroGeoSphere

HydroGeoSphere is a powerful numerical simulator specifically developed for supporting
water resource and engineering projects pertaining to hydrologic systems with surface and
subsurface flow and transport components.

In terms of simulation capability and computational aspects, the HydroGeoSphere code
has the following attributes:

Fluid flow

• Complete hydrologic cycle modeling using detailed physics of surface and subsurface
flow in one integrated code. The surface regime can be represented as 2-D areal flow for
the entire surface or as 2-D runoff into 1-D channels. The subsurface regime consists
of 3-D unsaturated/saturated flow. Both regimes naturally interact with each other
through considerations of the physics of flow between them.

• Physically-based accounting of all components of the hydrologic cycle water budget.

• Accurate delineation and tracking of the water table position, taking into account flow
in the unsaturated zone, delayed yield and vertical flow components.

• Handling of non-ponding or prescribed ponding recharge conditions.

• Automatic handling of seepage face conditions at the land-atmosphere interface.

• Automatic and correct apportioning of the total flow rate of a multi-layer well to
the well nodes, including the simulation of water flow and solute/temperature mixing
within the water column in the well.

• Accommodation of wellbore storage.

• Arbitrary combinations of porous, discretely-fractured, dual-porosity and dual-permeability
media for the subsurface.

Mass and thermal energy transport

• Capability of modeling non-reactive and reactive chemical species transport in the
associated surface and subsurface flow fields, including solute interactions between the
surface and subsurface flow regimes.

• Calculation of temperatures in the surface and subsurface flow regimes as driven by
air temperature and incoming solar radiation, accounting for land surface-atmospheric
thermal interactions.

• Accurate handling of fluid and mass/thermal energy exchanges between fractures and
matrix including matrix diffusion effects and solute/thermal energy advection in the
matrix.
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• Straight or branching decay chains representing degradation reactions.

Numerical methods

• The fully-implicit coupling approach used by the code provides for a robust mass
conserved solution scheme, which is essential for systems with strong interactions
between regimes.

• Parallelization employing OpenMP.

• Advanced computational algorithms and a flexible, user-programmable interface allow
the code to perform unprecedented, fully-integrated, 3-D simulation/animation on a
personal computer.

• Fluid, solute and energy balance tracking.

• Unstructured finite-element grids.

• Axi-symmetric grid option.

• 7-point finite-difference option.

• 8-node block or 6-node prism elements, 3- and 4-node plate elements for fractures and
surface water, and 2-node line elements for wells, storm and sanitary sewers, water
supply mains and tile drains or other types of linear infrastructure features.

• Adaptive time-stepping schemes with automatic generation and control of time steps,
sub-timing option at select nodes where flow and transport is rapid.

• Straightforward organization and control of simulation output.

• Robust and efficient ILU-preconditioned iterative sparse-matrix solver.

• Robust and efficient Newton-Raphson linearization option.

• Flexible pre- and post-processing capabilities.

For field applications and research investigations, HydroGeoSphere can be used to perform
event-based and continuous simulations on widely varying spatial scales ranging from single
soil column profiles to large-scale basins, which may include several catchments. Examples
of field applications of HydroGeoSphere include:

• Integrated water resource assessment.

• Watershed hydrologic analysis, including impacts of land-use or climate-change impacts
on both surface and subsurface water.

• Floodplain hydrologic analysis.

• Fluvial hydraulic analysis.

• Contaminant migration and fate in both surface and subsurface water.
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1.5 Operation and Input Options

The HydroGeoSphere conjunctive surface-subsurface flow simulator enjoys the benefit of
having already available and affordable GUI tools for grid generation and subsurface flow
model input as well as Tecplot for 3-D visualization and animation. In order to handle
spatial data analysis and visualization of surface water domain, GIS tools such as ArcView
and ArcInfo may be used.

The modular code features and input/output structures of HydroGeoSphere result in
four steps to solve a given problem.

1. Build the necessary data files for the pre-processor grok (as discussed in the reference
manual hydrosphere ref.pdf).

2. Run grok to generate the input data files for HydroGeoSphere.

3. Run HydroGeoSphere to solve the problem and generate output data files.

4. Postprocess the output files to visualize and analyze the results and produce reports.

At a minimum, Step 1 involves creating data files that contain information for discretizing the
problem domain, defining material properties for each element and specifying flow boundary
conditions.

Simulation output pertaining to surface flow regime calculations is reported to the main
HydroGeoSphere output file in a similar manner to that for the subsurface flow calculations.
Binary files are created individually for further investigation or post processing.

1.6 Document Organization and Usage Guide

This document is organized into two chapters. These chapters and their purposes are outlined
below.

Chapter 2 presents the mathematical theory that describes the various physical processes
that are presented in the model.

Chapter 3 shows how the mathematical theory is implemented in the HydroGeoSphere
code, with an emphasis on the numerical techniques used to address non-linearities that
arise when dealing with, for example, variably-saturated flow.

A complete list of references cited in each chapter can be found in the References section. A
summary of mathematical notation and a comprehensive index are provided at the end of
this document.

In addition to this document, the reference manual (hydrosphere ref.pdf) introduces the
user to the basic operations of the pre-processor and describes the input instructions used
to determine:
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• Problem description.

• Simulation control.

• Grid generation.

• Selection of grid components (nodes, elements, etc.)

as well as for the saturated-unsaturated subsurface flow, surface flow, and solute and energy
transport problems.

The verification manual (hydrosphere verif.pdf) contains descriptions of several verifica-
tion problems that were designed to test and demonstrate the capabilities of HydroGeo-
Sphere in solving a variety of flow and transport phenomena. It compliments the set of
verification tests that are installed alongside HydroGeoSphere.



Chapter 2

Theory

2.1 Subsurface Flow

2.1.1 General

The current implementation of HydroGeoSphere assumes that the subsurface flow equation
in a porous medium is always solved during a simulation, either for fully-saturated or variably-
saturated flow conditions. We therefore first present the basic subsurface flow equation
solved by HydroGeoSphere. This basic equation can be expanded to incorporate, among
other features, discrete fractures, a second interacting porous continuum (e.g. fractures or
macropores), wells, tile drains and surface flow. The following assumptions are made for
subsurface flow:

• The fluid is essentially incompressible.

• The porous medium and fractures (or macropores), if present, are non-deformable.

• The system is under isothermal conditions.

• The air phase is infinitely mobile.

2.1.2 Governing Equations

2.1.2.1 Porous Medium

The following modified form of Richards’ equation is used to describe three-dimensional
transient subsurface flow in a variably-saturated porous medium:

−∇ · (wmq) +
∑

Γex ±Q = wm
∂

∂t
(θsSw) (2.1)

10



CHAPTER 2. THEORY 11

where wm [dimensionless] is the volumetric fraction of the total porosity occupied by the
porous medium (or primary continuum). This volumetric fraction is always equal to 1.0
except when a second porous continuum is considered for a simulation, which is the case
when the dual continuum option is used to represent existing fractures or macropores. The
fluid flux q [L T−1] is given by:

q = −K · kr∇(ψ + z) (2.2)

where kr = kr(Sw) represents the relative permeability of the medium [dimensionless] with
respect to the degree of water saturation Sw [dimensionless], ψ is the pressure head [L],
z is the elevation head [L] and θs is the saturated water content [dimensionless], which is
assumed equal to the porosity. Fluid exchange with the outside of the simulation domain, as
specified from boundary conditions, is represented by Q [L3 L−3 T−1], which is a volumetric
fluid flux per unit volume representing a source (positive) or a sink (negative) to the porous
medium system.

The hydraulic conductivity tensor, K [L T−1], is given by:

K = ρg

µ
k (2.3)

where g is the gravitational acceleration [L T−2], µ is the viscosity of water [M L−1 T−1],
k is the permeability tensor of the porous medium [L2] and ρ is the density of water [M
L−3], which can be a function of the concentration C [M L−3] of any given solute such that
ρ = ρ(C).

Water saturation is related to the water content θ [dimensionless] according to:

Sw = θ

θs
(2.4)

In Equation 2.1, Γex represents the volumetric fluid exchange rate [L3 L−3 T−1] between the
subsurface domain and all other types of domains supported by the model and it is expressed
per unit volume of the other domain types. Currently, these additional domains are surface,
wells, tile drains, discrete fractures and dual continuum. The definition of Γex (positive for
flow into the porous medium) depends on the conceptualization of fluid exchange between
the domains and will be defined in later sections that discuss these respective flow domains.
In the equations shown for the other domains, we will use the notation ex=f, ex=d, ex=w,
ex=t, ex=o, ex=c, for the fracture, dual continuum, well, tile drain, surface and channel
domains, respectively.

The primary variable of solution for the nonlinear flow Equation 2.1 is the pressure head,
and constitutive relations must be established that relate the primary unknown ψ to the
secondary variables Sw and kr. The relative permeability may be expressed in terms of
either the pressure head or the water saturation. Commonly used functions incorporated in
the model are those presented by van Genuchten (1980) and Brooks and Corey (1964).

Using the Brooks and Corey functions, the saturation is given by:
Sw = Swr + (1− Swr) | αψ |−β for ψ < −1/α
Sw = 1 for ψ ≥ −1/α (2.5)
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and the relative permeability is obtained from:

kr = Se
(2/β+lp+2) (2.6)

where α [L−1] is the inverse of the air-entry pressure head, β [-] is the pore-size distribution
index, lp is the pore-connectivity parameter assumed equal to 2.0 in Brooks and Corey
(1964), and Se is often called an effective saturation, given by Se = (Sw − Swr)/(1− Swr),
with Swr being the residual water saturation [-].

Based on earlier work by Mualem (1976), van Genuchten (1980) later proposed the following
saturation-pressure relation:

Sw = Swr + (1− Swr)
[
1+ | αψ |β

]−ν
for ψ < 0

Sw = 1 for ψ ≥ 0
(2.7)

with the relative permeability given by:

kr = S(lp)
e

[
1−

(
1− S1/ν

e

)ν]2
(2.8)

where (
ν = 1− 1

β

)
, β > 1 (2.9)

and where α and β are usually obtained from a fit of Equations 2.7 and 2.8 to experimental
results. For his relative permeability model, Mualem (1976) has estimated that the pore-
connectivity parameter lp is equal to 0.5 for most soils.

Although other fundamental relations exist, any arbitrary, but physically realistic, function
for Sw(ψ) and kr(Se) can also be handled through the use of tabular data input for these
parameters, which is also made available in the model. Furthermore, hysteresis is not
considered here, but may be included in a future version of HydroGeoSphere.

To describe subsurface flow in the saturated zone, the storage term forming the right-hand
side of Equation 2.1 is expanded in a way similar to that presented by Cooley (1971) and
Neuman (1973). They relate a change in storage in the saturated zone to a change in
fluid pressure through compressibility terms as is conventionally done in hydrogeological
applications. They also assume that the bulk compressibility of the medium is constant for
saturated and nearly-saturated conditions. For unsaturated conditions, it is assumed that
the compressibility effects on storage of water are negligible compared to the effect of changes
in saturation. The following expression is obtained for the storage term in Equation 2.1
(Cooley, 1971; Neuman, 1973):

∂

∂t
(θsSw) ≈ SwSs

∂ψ

∂t
+ θs

∂Sw
∂t

(2.10)

where Ss is the specific storage coefficient of the porous medium [L−1].
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2.1.2.2 Discrete Fractures

A fracture is idealized here as the space between two-dimensional parallel surfaces, with the
tacit assumptions that the total head is uniform across the fracture width. The equation
for variably-saturated flow in a fracture of width wf [L] can be written by extending the
saturated fracture flow equations Berkowitz et al. (1988); Sudicky and McLaren (1992) and
using the analogy of Richards Equation (Equation 2.1) for the porous matrix. With this
extension, the governing two-dimensional flow equation in a fracture has the form:

−∇ · (wfqf )− wfΓf = wf
∂Swf
∂t

(2.11)

where the fluid flux qf [L T−1] is given by:

qf = −Kf · krf∇(ψf + zf ) (2.12)

where ∇ is the two-dimensional gradient operator defined in the fracture plane, krf is the
relative permeability of the fracture [-], ψf and zf are the pressure and the elevation heads
within the fracture [L], and Swf is the water saturation for the fracture [-]. The saturated
hydraulic conductivity of a fracture Kf [L T−1], having a uniform aperture wf is given by
(Bear, 1972):

Kf =
ρg w2

f

12µ (2.13)

where the fluid density can be a function of the concentration Cf of any given solute in the
fracture [M L−3], such that ρ = ρ(Cf ).

Constitutive relations are also required to describe variably-saturated flow in the fractures.
There is a very limited number of studies where these relationships have been derived
experimentally (see e.g., Reitsma and Kueper (1994)). Several theoretical studies have,
nevertheless, been performed in order to characterize the nature of the relationships. Wang
and Narasimhan (1985) and Rasmussen and Evans (1989) generated synthetic relations
between pressure, saturation and relative permeability for a single fracture surface containing
a distribution of apertures. Their results were based on capillary theory and they used the
well-known cubic law to represent flow in the fracture. Pruess and Tsang (1990) considered
the problem of two-phase flow in a rough-walled fracture surface. They subdivided the
fracture surface into sub-elements and assigned a spatially-correlated aperture to each. The
occupancy of each element by either the wetting or the non-wetting phase fluid was based
on a prescribed entry pressure relationship. Once the fluid occupancy was assigned to
each element, the relative permeabilities were obtained by performing two single-phase
flow simulations: one for the region occupied by the wetting phase and the other for the
non-wetting phase.

In HydroGeoSphere, relative permeability and saturation-pressure head relationships for
the fractures are given by either the Brooks-Corey model (Equations 2.5 and 2.6), the Van
Genuchten model (Equations 2.7 and 2.8) or they can be given in tabular forms, which gives
flexibility to the user and does not restrict data entry to fixed functions.
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Another process that could be considered when describing flow in variably-saturated fractured
porous media is the reduction of the area available for flow across a fracture-matrix interface.
Some portions of a fracture, as it desaturates, cannot transmit any water and thus reduce
the area available for matrix flow across the fracture. We use the approach of Wang and
Narasimhan (1985) who represented this phenomenon with a function describing the change
in effective fracture-matrix area as a function of pressure. This effective area is only applied
to those matrix nodes that are also fracture nodes.

Using arguments similar to those invoked for the porous medium equation, the storage term
in Equation 2.11 describing variably-saturated flow in the fractures becomes:

∂

∂t
Swf ≈ SwfSsf

∂ψf
∂t

+ ∂Swf
∂t

(2.14)

where Ssf is the specific storage coefficient for the fractures [L−1]. Because it is assumed here
that the fractures are non-deformable and fluid-filled, there is no contribution to the storage
term from fracture compressibility. Thus, the specific storage coefficient for a fracture under
saturated conditions is related to the water compressibility, αw [L T2 M−1], according to:

Ssf = ρgαw (2.15)

The validity of assuming non-deformable fractures is likely to be reasonable if the fractures
have a high normal stiffness or if changes in the effective stress field within the system due
to pumping, for example, are small.

2.1.2.3 Dual Continuum

The HydroGeoSphere model can simulate variably-saturated fluid flow in a dual continuum
based on the formulation presented by Gerke and van Genuchten (1993). The dual continuum
formulation in HydroGeoSphere involves two separate continua, with the first continuum
represented by the porous medium. We present here the formulation for the second continuum,
which is linked to the porous medium continuum by a fluid exchange term. This second
continuum could represent, for example, fractures or macropores that are present in a porous
matrix.

Similarly to flow in the porous medium, three-dimensional variably-saturated flow in the
second continuum is described by a modified form of Richards’ equation:

−∇ · (wdqd)− Γd ±Qd = wd
∂

∂t
(θsdSwd) (2.16)

where the fluid flux qd [L T−1] is given by:

qd = −Kd · krd∇(ψd + zd) (2.17)

where krd is the relative permeability of the medium [-] with respect to the degree of water
saturation Swd [-], ψd is the pressure head [L], zd is the elevation head [L] and θsd is the
saturated water content [-], which is equal to the porosity of the dual continuum. Fluid
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exchange with the outside of the simulation domain is represented by a volumetric fluid flux
per unit volume Qd [L3 L−3 T−1]. The volumetric fraction of the total porosity occupied by
the dual continuum is given by wd [-]. We assume here that the sum of volumetric fraction
of the dual continuum wd and that of the porous medium wm is equal to 1.0.

The hydraulic conductivity tensor of the dual continuum, Kd [L T−1], is given by:

Kd = ρg

µ
kd (2.18)

where kd is the permeability tensor of the dual continuum [L2] and where the density of
water can be a function of the concentration Cd [M L−3] of any given solute in the dual
continuum such that ρ = ρ(Cd).

Similarly to the porous medium, the functional relationships relating pressure head to
saturation and relative permeability to saturation are described by either the Van Genuchten
or the Brooks-Corey functions, or are given in tabular form.

For cases where the dual continuum represents fractures, some expressions can be derived to
relate the permeability of the fractures to a representative fracture aperture and spacing
(for example, Bear (1972)). For example, for a set of parallel fractures of uniform aperture
wf with a uniform spacing equal to fs [L], and assuming one-dimensional flow in a direction
parallel to the fracture, the equivalent permeability of the set of fractures is given by:

kd =
w2
f

12 with wd = wf
fs

(2.19)

For the second continuum the storage term in Equation 2.16 is expanded in a manner similar
to Equation 2.10 for the porous medium, using the specific storage Ssd [L−1] for the second
continuum.

2.1.2.4 1D Hydromechanical coupling

The HydroGeoSphere code can be used to simulate transient flow affected by surface
loading conditions. Examples of surface loading conditions include: advent or retreat of
glaciation, erosion, and deposition.

Under hydromechanical equilibrium conditions, the governing equations are (Neuzil, 2003):

∂σij
∂xj

= 0 (2.20a)

σij = 2Gεij + 2G ν

1− 2ν εkkδij + αpδij (2.20b)

∂

∂xi

(
Kij

∂h

∂xj

)
= Ss3

∂h

∂t
− βSs3

1
ρg

∂σt
∂t
±Q (2.21)
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where σij is the total stress [M T−2 L−1] defined by Equation 2.20b, εij is the mechanical
strain [-], G is the shear modulus [M T−2 L−1], ν is Poisson’s ratio [-], α is the effective-stress
hydroelastic constant [-], p is fluid pressure [M T−2 L−1], Ss3 is the three-dimensional specific
storage coefficient [L−1] of the porous medium originally defined in Equation 2.10, β is the
three-dimensional loading efficiency [-], and σt is the mean normal total stress [M T−2 L−1].
The loading efficiency is the fraction of stress that is transferred to fluid pressure. The ratio
σt/ρg may be interpreted as equivalent fresh water height of the mean normal total stress
at a given point. The three-dimensional loading efficiency, α, shear modulus, mean normal
total stress, and specific storage are defined below:

β =

(
1
K −

1
Ks

)
(

1
K −

1
Ks

)
+
(
θs
Kf
− θs

Ks

) (2.22)

α =
(

1− K

Ks

)
(2.23)

G = E

2 (1 + ν) (2.24)

σt = σkk
3 (2.25)

Ss3 =
( 1
K
− 1
Ks

)
+ ρg

(
θs
Kf
− θs
Ks

)
(2.26)

where K is the bulk modulus of porous media [M T−2 L−1], Ks is the solid bulk modulus [M
T−2 L−1], Kf is the fluid bulk modulus [M T−2 L−1], and E is Young’s elastic modulus [M
T−2 L−1]. The three-dimensional loading efficiency is the ratio of change in fluid pressure to
change in mean total stress under undrained conditions. For highly compressible media, β
approaches unity while in stiff media it can be zero (Neuzil, 2003). As porosity approaches
zero, K approaches Ks and the effects of water pressure on total stress (Equation 2.20b) and
the effects of change of total stress on water storage (Equations 2.22 and 2.26) also vanish.

However, the current version of HydroGeoSphere does not have a mechanical or an
equilibrium module that is coupled with the flow module. The mean normal total stress,
which may be spatially distributed and vary with time, must be estimated externally
to HydroGeoSphere. However, under the condition of purely vertical strain, the flow
component can be decoupled or partially decoupled from the mechanical component.

Mechanical and hydraulic behaviour can also be partially coupled under the conditions
of relatively homogeneous and areally extensive vertical loading. Under these conditions,
Equation 2.21 is written as

∂

∂xi

(
Kij

∂h

∂xj

)
= Ss1

∂h

∂t
− ζSs1

1
ρg

∂σzz
∂t
±Q (2.27)
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where σzz is the vertical total stress [M T−2 L−1], Ss1 is the modified one-dimensional
specific storage [L−1] (Neuzil, 2003) and ζ is the one-dimensional loading efficiency [-]. Ss1
and ζ are defined below:

Ss1 =
( 1
K
− 1
Ks

)(
1− 2α 1− 2ν

3(1− ν)

)
+ ρg

(
θs
Kf
− θs
Ks

)
(2.28a)

ζ = β(1 + ν)
3(1− ν)− 2αβ(1− 2ν) (2.28b)

It can be seen that Equation 2.27 is a subset of Equation 2.21 which is more general.

Equations 2.20 to 2.26 are developed for isotropic materials, for transversely anisotropic
materials (isotropic along horizontal planes and anisotropic in the vertical direction), β , σt,
and Ss3 in Equation 2.21 must be replaced by:

β′ =
1
KH
− 1

Ks(
2

3KH
− 1

3KV
− 1

Ks

)
+
(
θs
Kf
− θs

Ks

) (2.29)

σ′t = σxx
3 + σyy

3 + σzz
3

( 1
KV
− 1

Ks

1
KH
− 1

Ks

)
(2.30)

S′s3 =
( 2

3KH
+ 1

3KV
− 1
Ks

)
+
(
θs
Kf
− θs
Ks

)
(2.31)

where σxx, and σyy are total stresses [M T−2 L−1] in the horizontal x and y directions,
respectively, σzz is the total stress [M T−2 L−1] in the vertical direction, KH and KV are
bulk moduli in the horizontal and vertical directions, respectively. It is implicitly assumed
that solid grain compressibility is isotropic. A general formulation for anisotropic materials
is given by Guvanasen and Chan (2000).

2.2 Surface Flow

2.2.1 General

This section describes the mathematical theory of the surface water flow package of the
HydroGeoSphere simulator. Surface flow on catchment basins is an important component
of the hydrologic cycle, governing flow to and from the subsurface, channel networks, rivers,
lakes and reservoirs. Lake and reservoir flow dynamics and hydrologic conditions of wetlands
are also areal surface flow processes.

Areal surface flow is represented in HydroGeoSphere by a two-dimensional depth-averaged
flow equation, which is the diffusion-wave approximation of the Saint Venant equation for sur-
face water flow. Before presenting the diffusion-wave equation solved by HydroGeoSphere
we present the simplifications needed to obtain this equation from the full two-dimensional
Saint Venant equations.
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2.2.2 Governing Equations

2.2.2.1 Surface Runoff

The two-dimensional Saint Venant equations for unsteady shallow water flow consist of three
equations, which are given by the following mass balance equation:

∂φoho
∂t

+ ∂(vxodo)
∂x

+ ∂(vyodo)
∂y

+ doΓo ±Qo = 0 (2.32)

coupled with the momentum equation for the x-direction:
∂

∂t
(vxodo) + ∂

∂x
(v2
xodo) + ∂

∂y
(vxovyodo) + gdo

∂do
∂x

= gdo(Sox − Sfx) (2.33)

and the momentum equation for the y-direction:
∂

∂t
(vyodo) + ∂

∂y
(v2
yodo) + ∂

∂x
(vxovyodo) + gdo

∂do
∂y

= gdo(Soy − Sfy) (2.34)

where do is the depth of flow [L], zo is the bed (land surface) elevation [L], ho is the water
surface elevation [L] (ho = zo + do), vxo and vyo are the vertically averaged flow velocities
in the x- and y-directions [L T−1], Qo is a volumetric flow rate per unit area representing
external source and sinks [L T−1], doΓo [L T−1] is a volumetric flow rate per unit area
representing flow between the surface and subsurface domains, and φo is a surface flow
domain porosity which is unity for flow over a flat plane, and varies between zero at the land
surface and unity at the top of all rills and obstructions, for flow over an uneven surface.
This conceptualization is discussed further in Section 2.2.2.2.

The variables Sox, Soy, Sfx, and Sfy are dimensionless bed and friction slopes in the x− and
y−directions, respectively. These slopes can be approximated with either the Manning, the
Chezy or the Darcy-Weisbach equations. Using the Manning equation, the friction slopes
are approximated by

Sfx = vxovson
2
x

d
4/3
o

(2.35)

Sfy =
vyovson

2
y

d
4/3
o

(2.36)

where vso is the vertically averaged velocity [L T−1] along the direction of maximum slope s
(vso =

√
v2
xo + v2

yo), nx and ny are the Manning roughness coefficients [L−1/3 T] in the x-
and y-directions.

Using the Chezy equation, the friction slopes are approximated by

Sfx = 1
C2
x

vxovso
do

(2.37)

Sfy = 1
C2
y

vyovso
do

(2.38)
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where Cx and Cy are the Chezy coefficients [L1/2 T−1] in the x- and y-directions.

Using the Darcy-Weisbach equation, the friction slopes are approximated by

Sfx = fx
8g
vxovso
do

(2.39)

Sfy = fy
8g
vyovso
do

(2.40)

where fx and fy are dimensionless Darcy-Weisbach friction factors in the x- and y-directions.
The friction factors fx and fy may be obtained from a Moody diagram which can be
approximated for laminar flow as (Akan and Yen, 1981):

fi = CL
Rei

(2.41)

where the index i represents the x or y direction, CL is a constant which depends on rainfall
intensity as:

CL = 24 + 27.162r0.407 (2.42)

where r is the rainfall intensity in inches hour−1, and Rei is the Reynolds number in direction
i given as:

Rei = viodo
γ

(2.43)

where γ is the kinematic viscosity [L2 T−1].

Momentum Equations 2.33 and 2.34 can be simplified by neglecting the first three terms
on the left hand side, representing inertia (Gottardi and Venutelli, 1993) and using either
approximation of the friction slopes (Equations 2.39 and 2.40) to give

vox = −Kox
∂ho
∂x

(2.44)

voy = −Koy
∂ho
∂y

(2.45)

where Kox and Koy are surface conductances [L T−1] that depend on the equation used to
approximate the friction slopes. Conductances for the Manning equation are given by

Kox = d
2/3
o

nx

1
[∂ho/∂s]1/2

(2.46)

Koy = d
2/3
o

ny

1
[∂ho/∂s]1/2

(2.47)

where s is taken in the direction of maximum slope.
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For the Chezy equation, Kox and Koy are given by

Kox = Cxd
1/2
o

1
[∂ho/∂s]1/2

(2.48)

Koy = Cyd
1/2
o

1
[∂ho/∂s]1/2

(2.49)

Similarly, for the Darcy-Weisbach relation, Kox and Koy are given by

Kox =
√

8g
fx

1
[∂ho/∂s]1/2

(2.50)

Koy =
√

8g
fx

1
[∂ho/∂s]1/2

(2.51)

Comparison of the various expressions for the conductance indicates the following relationship
between the coefficients of the Manning, Chezy and Darcy-Weisbach equations:

Cx = d
1/6
o

nx
=
√

8g
fx

and Cy = d
1/6
o

ny
=
√

8g
fy

(2.52)

The surface flow equation solved by HydroGeoSphere is finally obtained by substituting
Equations 2.44 and 2.45 into continuity Equation 2.32, which gives the following diffusion
wave approximation for surface flow:

∂φoho
∂t

− ∂

∂x

(
doKox

∂ho
∂x

)
− ∂

∂y

(
doKoy

∂ho
∂y

)
+ doΓo ±Qo = 0 (2.53)

with Equations 2.50 and 2.51 providing expressions for conductances Kox and Koy.

In addition to neglecting the inertial terms, the assumptions associated with the diffusion-
wave equation are those of the Saint Venant equations, which are depth-averaged flow
velocities, hydrostatic pressure distribution vertically, mild slope, and dominant bottom
shear stresses. Furthermore, it is assumed that Manning’s, Chezy’s, or Darcy-Weisbach’s
formula are valid to calculate frictional resistance forces for unsteady flow.

To simplify the presentation of the discretized surface flow equation in the next chapter,
Equation 2.53 is rewritten in vectorial notation:

−∇ · (doqo)− doΓo ±Qo = ∂φoho
∂t

(2.54)

where the fluid flux qo [L T−1] is given by:

qo = −Ko · kro∇(do + zo) (2.55)

where kro is a dimensionless factor that accounts for the reduction in horizontal conductance
from obstruction storage exclusion, which is discussed in Section 2.2.2.2.
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2.2.2.2 Treatment of Rill Storage and Storage Exclusion for Rural and Urban
Environments

For investigations of urban runoff or agricultural settings, the storage and flow terms of
Equation 2.53 have been further enhanced to include rill storage, also known as depression
storage, and exclusion effects from obstruction storage. Figure 2.1 shows various physical
settings that can be simulated by the model, given an appropriate formulation of the storage
and flow terms.

It can be assumed that flow occurs over a flat plane, as shown in Figure 2.1a, without any
rill storage or obstruction storage effects. In that case, the surface flow domain porosity
φo is always unity. For flood calculations in urban environments, the setting may be much
different as shown in Figure 2.1b, with flow occurring between the grid of buildings in an
averaged sense over the grid area. If the flood is high enough to cover the buildings, only
then is the full area available for flow and storage of water, otherwise, if not accounted for,
lower flood-depths and incorrect discharge would be predicted for an urban flood event. The
storage capacity that is reduced by the presence of the urban features is called obstruction
storage exclusion. Obstruction storage exclusion may also result from vegetation in rural
or agricultural settings. In addition, these features may also affect the conductance of the
horizontal flow term due to additional frictional resistance and small scale energy dissipation
over the obstruction heights. Rill storage can be an important factor in several urban as
well as rural settings as shown in Figure 2.1c. It represents the amount of storage that must
be filled before any lateral surface flow can occur. Microtopographic relief, relative to the
scale of the finite elements in the grid, is included in rill storage and can have a substantial
impact on hydrograph shape (Woolhiser et al., 1997). Finally, for agricultural plots or grass
lands (shown in Figure 2.1d), the storage effects of rills as well as storage exclusion of the
crop must be taken into account and both rill and obstruction storage need to be included
in the model. In addition, horizontal flow term conductances may also be affected over the
obstruction heights.

Rill storage and obstruction storage exclusion are both modeled by assuming that the
combined depressions and exclusions have a maximum elevation and that the area covered
by surface water varies between zero and full area, from land surface up to this maximum
elevation as shown in Figure 2.2. The variation of area covered by surface water with depth
(Hs) is expressed as a volumetric height which is assumed to be parabolic. The slope of this
curve is a porosity or void ratio which varies between zero at land surface up to unity at
height Hs. Linear or other functions may have been used, however, a parabolic variation
provides for continuous derivatives at land surface and at the maximum height Hs, thus
assisting during numerical solution by Newton-Raphson or modified-Picard linearization
methods. The heights of depression storage Hd and of storage within the obstructions, Ho,
may be estimated such that they geometrically represent the mean spacing (equivalent void
space) within the respective storage elements. The depression storage height above land
surface (LS + Hd), is also used to indicate the elevation below which flow depth is zero
in the advection terms of Equation 2.53, when depression storage is modeled for a system.
Thus, surface flow occurs laterally only above elevations of LS +Hd, i.e., when water levels
are above the depression storage elevations. In addition, conductance terms Kox and Koy
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Subsurface

(a) (b)

(c) (d)

L.S.

Subsurface

L.S.

Subsurface

L.S.

Subsurface

Obstruction Storage Exclusion

Rill Storage

L.S.

Note that Rill storage, obstruction storage exclusion as well as friction coefficients may be
varied on a stress period basis to account for crop growth or changes in land use.

Figure 2.1: Treatment of Storage Terms for Various Settings (adapted from Panday and
Huyakorn (2004, Figure 2)).
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Storage Obstruction 
Dead Storage

Flowing Regions

h

V.H.L.S.

L.S.
hd

ho

hs

V.H.

=
=
=
=

=

Land surface = elevation of top of underlying subsurface node.
height of depression storage = height at which overland flow starts to occur.
height of storage within obstructions
hd + h0 = maximum height over which area covered by surface water goes
from zero to unity.
‘volume height’ defined as the height from L.S., of an equivalent volume
of water without rills or obstructions.

hs

h0

hd

0

Figure 2.2: Conceptual Model for Depression Storage and Obstruction Storage Exclusion
(adapted from Panday and Huyakorn (2004, Figure 3)).

may be further reduced by a factor kro above this elevation, up to the obstruction height of
storage exclusion to account for the additional resistance losses. The factor kro varies from
zero to unity as the obstruction heights vary from 0 to Ho.

2.3 One-Dimensional Hydraulic Features

2.3.1 General

One-dimensional hydraulic features like streams, rivers, subsurface wells, water supply
lines, and drain pipes are simulated by a general one-dimensional equation to describe
fluid flow in terms of the Hagen-Poiseuille analytic, Manning’s or Hazen-Williams empirical
formula. Common node or dual node approaches can be used to simulate the interaction
between the 1D flow domain and 2D overland or 3D subsurface domains. The 1-D features
in HydroGeoSphere can be applied to design urban infrastructures and regional-scale
drainage networks.
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2.3.2 Governing Equations

2.3.2.1 General One-Dimensional Flow

Water flow along the axis, s, of a one-dimensional features can be described by the following
generalized form of the continuity equation integrated over the flow area perpendicular to
the principal axis, Af :

− ∂

∂s

(
Q1D

)
+Qwδ

(
s− sp

)
= ∂

∂t

[
Af
]

(2.56)

and:

Q1D = Af · q1D (2.57)

where Q1D is the fluid flux along the one-dimensional medium, q1D is the linear averaged
velocity over the cross sectional flow area Af and Qw is the rate of addition or extraction of
water at s = sp . In pipe flow, the area of flow is defined as a function of saturation such
that:

Af = A1DS1D (2.58)

where A1D is the saturated pipe area and S1D is the pipe saturation ranging between 0 and
1 for empty and fully filled pipes.

Various analytical and empirical relationships have been suggested to solve one-dimensional
fluid flux for different types of media. Hagen-Poiseuille analytic formula has been used to
describe flow along the inside of wells while Manning’s equation is widely used for open
channel flow for both streams and rivers. Furthermore, the Hazen-Williams equation has
been typically recommended for pipe flow in water supply systems. A generalized form
to describe the flow along each of the one dimensional hydraulic features is shown in the
following form:

Q1D = −C ·Af ·
(
RH

)p · [∂hw
∂s

]q
(2.59)

where C is a proportionality constant, p and q are fitting exponents, and RH is the hydraulic
radius.

2.3.2.2 Flow Through Subsurface Wells

Groundwater wells are typically installed at the ground surface and can be used to extract
groundwater, monitor subsurface environments, or inject hazardous waste fluids for long-term
storage. Generally, the length of the subsurface wells can be assumed to be much larger than
the cross-sectional area of the well casing. With this assumption, well hydraulic properties
and fluid flow can be simplified, integrated, and averaged over the well cross section into a
one-dimensional approximation.
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Saturated groundwater flow along the axis of a well, assuming laminar conditions, has
been described using Hagen-Poiseuille analytic formula in groundwater hydrology Therrien
and Sudicky (2000):

Q1D = −
(
πr2

w

)(
r2
wρg

8µ

)
∂hw
∂s

(2.60)

and:
∂

∂s

(
πr4

w

ρg

8µ
∂hw
∂s

)
+Qwδ(s− sp) + Γpm→w = πr2

wSsw
∂hw
∂t

(2.61)

where rw is the radius of a well, hw = hw(s) is the hydraulic head in the well, Ssw = ρgβ is
the specific storage coefficient of a fluid-filled borehole where ρ and β are the density and
compressibility of water, g is the gravitational acceleration, and µ is the viscosity of the fluid.
For partially saturated wells, Equations 2.60 and 2.61 are modified to include a reduction
of flow area, permeability, and water volume due to the decrease in water saturation as
described as:

Q1D = −krw
(
Sww · πr2

w

)(
r2
w

ρg

8µ

)
∂hw
∂s

(2.62)

and:
∂

∂s

(
krwSwwπr

4
w

ρg

8µ
∂hw
∂s

)
+Qwδ(s− sp) = πr2

wSwwSsw
∂hw
∂t

+ πr2
w

∂Sww
∂t

(2.63)

where Sww is the degree of saturation and the relative permeability of the well and krw
ranges between 0 (when it is completely dry) and 1 (when it is fully-saturated).

Therrien and Sudicky (2000) accounted for the interaction between the well and the sur-
rounding porous medium by assuming and the flux continuity can also be assumed such
that

Γpm→w = −2πrw(kr)exch(pm,w)Kexch(pm,w)
hw − h

lexch(pm,w)
(2.64)

and:
∂

∂s

(
krwSwwπr

4
w

ρg

8µ
∂hw
∂s

)
+Qwδ(s− sp) + Γpm→w = πr2

wSwwSsw
∂hw
∂t

+ πr2
w

∂Sww
∂t

(2.65)

where Γpm→w is the fluid exchange through the interface between the porous media and well
with an exchange the thickness of lexch(pm,w) and a hydraulic conductivity of Kexch(pm,w).
The upstream relative permeability (kr)exch(pm,w) is determined between the two domains
by:

(kr)exch(pm,w) =
{

(kr)pm, if h ≥ hw
(kr)w, if h < hw

(2.66)
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2.3.2.3 Flow Through Subsurface Pipe Systems

For the design of water supply system, pressure driven flow is often described by the Hazen-
Williams empirical equation (HWE). The HWE relates the flow of water and hydraulic
properties inside of the pipe to the rate of total head loss caused by friction such that

Q1D = −k · CHW ·Af · (RH)0.63 ·
[
∂hp
∂s

]0.54
(2.67)

∂

∂s

(
k · CHW ·Af · (RH)0.63 ·

[
∂hp
∂s

]0.54)
+Qpδ(s− sc) = πr2

pSsp
∂hp
∂t

(2.68)

where hp = hp(s) is the hydraulic head at the given location s (along the principal axis),
Ssp = ρgβ is the specific storage, Qp is the rate of water consumption at the location sc,
k is the dimensional unit conversion factor (0.849m0.37/s), CHW is the Hazen-Williams
roughness coefficient, and RH is the hydraulic radius defined as the ratio of the area of flow
and the wetted perimeter (RH ≡ Af/Pf ). The hydraulic radius for a full-pipe flow is defined
as:

RH = πr2
w

2πrw
= rw

2 (2.69)

Because water supply systems carry pressurized water through pipe networks, they lose a
certain portion of water throughout the networks. The leakage of water can be assumed to
follow a first-order leakance relationship and is incorporated into Equation 2.68 as:

Γp→pm = −2πrpKexch(pm,p)
hp − h

lexch(pm,p)
(2.70)

∂

∂s

(
k · CHW ·Af · (RH)0.63 ·

[
∂hp
∂s

]0.54)
+Qpδ(s− sc) + Γp→pm = πr2

pSsp
∂hp
∂t

(2.71)

Note that the head in water supply pipes, hp, is supposed to be significantly greater than
the surrounding head, h, and thus water should always leak from the water supply pipe into
the subsurface or Γp→pm.

2.3.2.4 Open Channel Flow

Open channel flow along rivers and streams in the surface or for gravity flow in sewer systems
is best described with Manning’s empirical formula:

Q1D = − 1
ns
·Af · (RH)2/3 ·

[
∂hc
∂s

]1/2
(2.72)
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∂

∂s

(
− 1
ns
·Af · (RH)2/3 ·

[
∂hc
∂s

]1/2)
= BT

∂hc
∂t

(2.73)

where ns is the Manning roughness coefficient, hc is the hydraulic head [L] in the channel,
and BT is the top width [L] of the channel water. Surface rivers and streams may interact
with both the overland domain (river banks) and also the porous medium (stream beds), for
example, see Figure 2.3. Sewer systems, typically buried underground, only interact directly

hc

ic

lexch(pm,c)

Zbank
ho Ground surface

SubsurfacePermeable material

Impermeable material

width

Figure 2.3: Rectangular 1-D channel cross section showing the stream bank height Zbank,
incision depth ic, streambed thickness lexch(pm,c), overland head ho, and channel head hc.

with the porous medium domain. Exchange between the 1-D channel domain and overland
domain, Γolf→c, is given by

Γolf→c =



0, if hc − ic < Zbank and ho < Zbank

(4Cd/3)(hup−Zbank)
√

2g(hup−hdn)
sgn(ho−hc+ic) , if hc − ic ≥ Zbank and ho ≥ Zbank

(4Cd/3)(hup−Zbank)
√

2g(hup−Zbank)
sgn(ho−hc+ic) , otherwise

(2.74)

where ic is the channel incision depth [L], hup and hdn are the upstream and downstream
heads [L], respectively, among ho and hc − ic, Zbank is the stream bank elevation [L], and
Cd is the weir discharge coefficient [-]. Exchange between the 1-D channel domain and
subsurface, Γpm→c, is given by

Γpm→c = −Pf · (kr)exch(pm,c) ·Kexch(pm,c)
hc − ic − h
lexch(pm,c)

(2.75)

where Pf is wetted perimeter [L], lexch(pm,c) is the streambed thickness [L], Kexch(pm,c) is
the streambed hydraulic conductivity, and the upstream relative permeability is defined as

(kr)exch(pm,c) =
{

(kr)pm, if h > hc − ic
(kr)c, if h ≤ hc − ic

(2.76)
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Incorporating the exchange terms into Equation (2.73) yields the final equation for 1-D
channel flow

∂

∂s

( 1
ns
·Af · (RH)2/3 ·

[
∂hc
∂s

]1/2)
+ Γpm→c + Γolf→c = BT

∂hc
∂t

(2.77)

2.4 Flow Coupling

Two different approaches are used to define the water exchange terms Γex between two
different domains. The first approach is based on superposition (see Therrien and Sudicky
(1996)), where continuity of hydraulic head is assumed between the two domains concerned,
which corresponds to instantaneous equilibrium between the two domains. In that case, the
Γex term does not need to be evaluated implicitly in the model and we do not present its
definition. However, the fluid exchange can be computed after the numerical solution of the
discrete equations as a post-processing step. This approach corresponds to the common
node scheme mentioned later in the manual.

The second method is more general because it does not assume continuity of hydraulic head
between two domains but uses a Darcy flux relation to transfer water from one domain
to the other. The Darcy flux is computed from the hydraulic head difference between two
domains and assumes that they are separated by a (possibly) thin layer of porous material
across which water exchange occurs. This second approach corresponds to the dual node
scheme mentioned later in the manual.

Table 2.1 summarizes the types of fluid flow coupling currently available in HydroGeo-
Sphere. Both common node and dual node approaches are currently available in the model
to simulate the exchange between the subsurface porous medium and fractures, between
the porous medium and wells, and between the porous medium and the tile drains. On the
other hand, fluid exchange between the subsurface porous medium and a dual continuum
can only be simulated with the dual node approach. We present here the definition of the
exchange term for the dual node approach.

Table 2.1: Types of Coupling and Dimensionality for Fluid Flow.
Coupling

Domains Common Dual
Porous medium - Discrete fractures (2-D)

√ √

Porous medium - Second continuum (3-D)
√

Porous medium - Wells (1-D)
√ √

Porous medium - Tile drains (1-D)
√ √

Porous medium - Surface (2-D)
√ √

Porous medium - Channel (1-D)
√ √
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2.4.1 Dual Continuum Subsurface Coupling

When the dual node approach is chosen to represent simultaneous flow in the subsurface
porous medium and a second continuum (representing fractures or macropores), the exchange
term can be defined as (Gerke and van Genuchten, 1993):

Γd = α∗wdKakra(ψd − ψ), (2.78)
where

α∗wd = βd
a
· γw
a
, (2.79)

βd/a is the macropore surface area per unit total volume of the medium [L−1], βd is a
dimensionless geometrical shape factor, a is the fracture-matrix skin thickness [L] over which
the flow exchange occurs, and γw is a dimensionless empirical coefficient. The hydraulic
conductivity of the interface between the two domains is given by Ka [L T−1] and its relative
permeability is kra [-]. For dual-porosity systems, the geometry factor βd has been shown
to be equal to 3 for rectangular slabs and 15 for spheres. Gerke and van Genuchten (1993)
provide more detail on the evaluation of the exchange term.

2.4.2 Surface - Subsurface Coupling

When the dual node approach is chosen to represent simultaneous flow in the subsurface
and the surface domain, the exchange term is given by:

doΓo = wm
krKzz

lexch
(h− ho) + wd

kdrKdzz

lexch
(hd − ho) (2.80)

where a positive Γo represents flow from the subsurface system to the surface system as
determined by Equation 2.32, ho is the surface water head, h and hd are the subsurface porous
medium and dual medium heads, respectively, kr and kdr are the relative permeabilities for
the exchange flux, Kzz and Kdzz are the vertical saturated hydraulic conductivities of the
underlying porous and dual media, respectively, and lexch is the coupling length. The relative
permeability term is same as the subsurface relative permeability when water flows from
subsurface to surface, while, when water flows from surface to subsurface it is determined by
the ratio of the water depth in the surface to the total obstruction height (Hs) such that

kr =
{
S

2(1−Sexch)
exch when do < Hs

1 when do > Hs
(2.81)

where Sexch = do/Hs.

2.5 Flow Boundary Conditions

2.5.1 Subsurface flow

Boundary conditions for subsurface flow include the following: first-type (Dirichlet) bound-
aries of prescribed hydraulic or pressure head, areal infiltration or recharge, source/sinks,
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evaporation, seepage faces, free-drainage and drain nodes, and third-type boundary con-
ditions. The boundary conditions can also be allowed to vary in time. Details of the
implementation of these boundary conditions in the model are given in the next chapter.

When HydroGeoSphere is used to solve fully coupled subsurface and surface flow, the areal
recharge boundary for subsurface flow is not required since the solution to the interacting
system determines the subsurface recharge.

2.5.2 Surface Flow

Boundary conditions to the surface flow system include the following: first-type (Dirichlet)
boundaries of prescribed water elevation, direct rainfall inputs, source/sinks, evaporation,
zero-depth gradient and nonlinear critical-depth conditions, as discussed in the next chapter.

2.5.3 Interception and Evapotranspiration

Interception and actual evapotranspiration are simulated as mechanistic processes governed
by plant and climatic conditions. The formulation used here is similar to that proposed by
Kristensen and Jensen (1975) and Allen et al. (1998), which is used in the model presented
by (Panday and Huyakorn, 2004). Actual evapotranspiration is calculated by reducing
potential evapotranspiration according to vegetation characteristics, subsurface saturation,
and rainfall distribution.

2.5.3.1 Interception and Canopy Evaporation

Interception is the retention, or storage, of a certain amount of precipitation on the leaves,
branches, and stems of vegetation. The interception storage varies between zero and the
interception storage capacity Smaxint [L], which depends on the vegetation type and its stage
of development. It is calculated from (Kristensen and Jensen, 1975)

Smaxint = cint · LAI (2.82)

where LAI is the dimensionless leaf area index, which is the cover of leaves over a unit area
of ground surface, and cint is the canopy storage parameter [L].

The interception storage is filled by rainfall and depleted by evaporation from interception,
which is equivalent to canopy evaporation. When the canopy evaporation interval is zero,
filling and emptying are done within a single time step of size ∆t according to the following
equations:

Ecan = min
(
Ep, Pp + S0

int/∆t
)

(2.83)

Sint = min
(
Smaxint , max(0, S0

int + (Pp − Ecan)∆t)
)

(2.84)

where Ep is potential evapotranspiration [L T−1], Pp is the precipitation rate [L T−1], and
S0
int [L] is the value of Sint [L] at the previous time.
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If the canopy evaporation interval ∆tcan [T] is positive, then canopy storage is allowed first
to fill and then empty once per interval, which typically comprises a number of simulation
timesteps. When filling

Ecan = 0 (2.85)

Sint = min
(
Smaxint , S

0
int + Pp ·∆t

)
(2.86)

and when emptying

Ecan = min
(
Ep, S

0
int/max(∆t,∆tcan + t0can − t)

)
(2.87)

Sint = max
(
0, S0

int − Ecan ·∆t
)

(2.88)

where t is the current simulation time and t0can ≤ t is the starting time of the current
filling/emptying cycle.

Potential evapotranspiration Ep is an input to the model and it may be derived from pan
measurements or computed from vegetation and climatic factors (radiation, wind, humidity,
and temperature) using the Penman–Monteith equation (Monteith, 1981) for vegetated
surfaces or a bare-ground evaporation formula (Senarath et al., 2000) for non-vegetated
surfaces, as a function of temperature, wind, and humidity conditions.

The interception process is simulated by a bucket model where precipitation in excess of
interception storage and canopy evaporation reaches ground surface. The effective rainfall
rate, or reduced rainfall rate, PEp [L T−1] that reaches ground surface after interception and
canopy evaporation is given by:

PEp = max
(

0, Pp −
Sint − S0

int

∆t − Ecan

)
(2.89)

2.5.3.2 Evapotranspiration

Evapotranspiration affects both surface and subsurface flow domains and it is rigorously
modeled as a combination of transpiration from vegetation and evaporation.

Transpiration from vegetation occurs within the root zone of the subsurface, which may be
above or below the water table. The rate of transpiration Tp [L T−1] is estimated using
the following relationship that distributes the net capacity for transpiration among various
factors (Kristensen and Jensen, 1975):

Tp = f1(LAI) f2(θ)RDF [Ep − Ecan] (2.90)

where f1(LAI) is a dimensionless vegetation term that is a function of the leaf area index,
f2(θ) is a function of the soil water content [dimensionless] and RDF is the time-varying
root distribution function [dimensionless].
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The vegetation term f1(LAI) is expressed as:

f1(LAI) = max [0,min (1, (C2 + C1 LAI))] (2.91)

where C1 and C2 are dimensionless fitting parameters.

The root distribution function RDF is defined as :

RDF =
∫ z′

2
z′

1
rF (z′)dz′∫ Lr

0 rF (z′)dz′
(2.92)

where Lr is the effective root length [L], z′ is the depth with respect to ground surface [L],
and rF (z′) is the root extraction function [L3 T−1], which typically varies logarithmically
with depth.

The soil water content function f2(θ) is expressed as

f2(θ) =



0 for 0 ≤ θ ≤ θwp
f3 for θwp ≤ θ ≤ θfc
1 for θfc ≤ θ ≤ θo
f4 for θo ≤ θ ≤ θan
0 for θan ≤ θ

(2.93)

where:

f3 = 1−
[
θfc − θ
θfc − θwp

]C3

(2.94)

f4 =
[
θan − θ
θan − θo

]C3

(2.95)

and where C3 is a dimensionless fitting parameters, θfc is the water content at field capacity,
θwp is the water content at the wilting point, θo is the water content at the oxic limit, and
θan is the water content at the anoxic limit.

The function f1(LAI) linearly correlates transpiration (Tp) with the leaf area index (LAI).
The function f2(θ) correlates Tp with the water state of the roots and is an extension of
the function of Kristensen and Jensen (1975) to account for root processes in greater detail.
Below the wilting-point water content, transpiration is zero; transpiration then increases to
a maximum at the field-capacity water content. This maximum is maintained up to the oxic
water content, beyond which the transpiration decreases to zero at the anoxic water content.
When the available water is greater than the anoxic water content, the roots become inactive
due to lack of aeration (Feddes et al., 1978). In general, f2(θ) is a nonlinear function of θ,
although the ramping function is linear when C3 = 1.

To incorporate root growth or time-varying root depths (Lr(t)), the equation to calculate
the transpiration rate needs to be modified as

Tp = f1(LAI)f2(θ)RDF (t)[Ep − Ecan] (2.96)
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where the time-varying root density function RDF (t) is defined as

RDF (t) = Lmfr(t) = LmL0
L0 + (Lm − L0)e−rt (2.97)

where Lm is the maximum root depth [L], fr(t) is the root growth coefficient, L0 is the
initial root depth [L], and r is the classical Verhulst–Pearl logistic growth rate.

Two models are provided for evaporation. The first model assumes that evaporation occurs if
potential evapotranspiration Ep has not been depleted by canopy evaporation Ecan and plant
transpiration Tp. In that case, evaporation from ground surface EOLF and the subsurface
soil layers Es are defined as:

EOLF = α∗OLF (Ep − Ecan − Tp) (2.98)

Es = α∗(Ep − Ecan − Tp − EOLF )EDF (2.99)

where EDF is the evaporation distribution function that includes the overland and subsurface
flow domains, and α∗OLF and α∗ are the wetness factors for surface and subsurface given by

α∗OLF =
{

( do
hs

)2(1−do/hs) for 0 ≤ do ≤ hs
1 for do > hs

(2.100)

α∗ =


θ−θe2
θe1−θe2

for θe2 ≤ θ ≤ θe1
1 for θ > θe1
0 for θ < θe2

(2.101)

where θe1 is the water content at the end of the energy-limiting stage (above which full
evaporation can occur) and θe2 is the limiting water content below which evaporation is zero
(Allen et al., 1998).

The second model assumes that evaporation occurs along with transpiration, resulting from
energy that penetrates the vegetation cover, and is expressed as

EOLF = α∗OLF (Ep − Ecan) [1− f1(LAI)]EDF (2.102)

Es = α∗(Ep − Ecan − EOLF ) [1− f1(LAI)]EDF (2.103)

Equation 2.101 expresses the water availability term for the subsurface domain. For the
overland flow domain, α∗ is calculated as varying between unity when the elevation of flow
is at or above depression storage zo +HD and zero for a flow elevation at the land surface
(zo), thus representing the reduced evaporative area of available water in the overland flow
domain within the depressions.

Two alternative conceptualizations are provided for the evaporation distribution function
EDF used in Equation 2.99 or 2.103. For the first conceptualization, it is assumed that the
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capacity for evaporation ((Ep −Ecan − Tp) in Equation 2.99 or (Ep −Ecan)(1− f1(LAI)) in
Equation 2.103) decreases with depth below the surface (subject to available water) due
to the reduction of energy penetration in the soil. Therefore, an appropriate EDF may be
prescribed as a function of its depth from land surface. For the second conceptualization, the
capacity for evaporation is met from the land surface downward to a prescribed extinction
depth (Bsoil).

2.5.3.3 Actual Evapotranspiration

Actual evapotranspiration is the sum of canopy evaporation (Ecan), surface evaporation
(EOLF ), subsurface evaporation (Es), and subsurface transpiration (Tp), which are defined
in the previous sections.

2.6 Winter Hydrological Processes

2.6.1 Surface Water Flow with Snowmelt

Depth integrated surface water flow equation describes only the mass balance of the liquid
water in the overland flow domain. In order to consider both solid and liquid phases of
water in the surface flow domain, the governing equation needs to be expanded to include
both water and snow mass (ρwdwv and ρsnowdsnow). If the solid phase snow is assumed to
be immobile, the mass balance of the total water can be formulated as the following:

∂ (ρwdwv + ρsnowdsnow)
∂t

=
∂

∂x

(
ρwdfKox

∂ho
∂x

)
+ ∂

∂y

(
ρwdfKoy

∂ho
∂y

)
− ρwΓex + ρwQo + ρsnow (Qsnow − µ)

(2.104)

where Qsnow and µsnow represent the rates of snow precipitation and sublimation per unit
surface area [L3 T−1 L−2]. The depth of snow is determined by the rates of snow precipitation,
sublimation, and melting (always sink) which is caused by temperature change.

∂

∂t
(ρsnowdsnow) = ρsnow (Qsnow − µ)− ρsnowQmelt (2.105)

where the depth of snow is always positive and the rate of melting is assumed to be
proportional to a constant (η) and the difference between air temperature (Tair ) and
threshold temperature (Tthreshold ) when Tair > Tthreshold or η = 0 when Tair ≤ Tthreshold .

ρsnowQmelt = η (Tair − Tthreshold) (2.106)

By combining the total water mass balance equation with the snow balance equation, the
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balance equation for the liquid phase water is derived as

∂ (ρwdwv)
∂t

= ∂

∂x

(
ρwdfKox

∂ho
∂x

)
+ ∂

∂y

(
ρwdfKoy

∂ho
∂y

)
− ρwΓex + ρwQo + ρsnowQmelt

(2.107)

The above equation indicates that the snowmelt always acts as a source for the liquid water
balance in the surface flow domain.

2.6.2 Groundwater Flow with Freezing and Thawing of Pore Water

In the subsurface flow system, a conventional groundwater flow equation describes the mass
balance of only the liquid water in a three-dimensional porous medium. When the liquid
phase of water can be transformed into the solid phase ice (i.e., freezing) or vice versa (i.e.,
melting), the total mass of water in the system is ρwθsSw + ρiceθsSice where the subscripts
ice represents the solid phase ice. If the ice is assumed to be immobile, then the balance of
the total water mass can be described by the following equation:

∂

∂t
(ρwθsSw + ρiceθsSice) = −∇ · ρwq + (ρwQw) (2.108)

where ρice and Sice are the density and saturation of solid phase ice in the porous medium.

The partitioning of water between solid and liquid phases is assumed to be determined only
by the temperature (which is a function of time at a given point) such that

p(T ) = ρiceSice
ρwSw + ρiceSice

=


0 if T ≥ Tf(

Tf − T
Tf − Tm

)β
if Tm ≤ T < Tf

1 if T < Tm

, (2.109)

where Tf and Tm are the freezing and melting temperatures, respectively. Based on
experimental data, Rempel (2008) showed that the fitting parameter β [-] ranges between
0.19 and 1.15, with a mean of 0.42. If the density difference between solid and liquid phases
of water is assumed to be negligible and the total water saturation remains constant at a
given time at a given location,

∂

∂t
(ρiceθsSice) = ∂p(T )

∂t
θs [Swρw + Siceρice] (2.110)

By subtracting the balance equation of ice mass from the balance equation of the total water
mass, mass balance for the liquid phase water is derived as the following:

∂

∂t
(ρwθsSw) = −∇ · ρwq + (ρwQw)− ∂p(T )

∂t
θs [Swρw + Siceρice] (2.111)

where the last term for the freezing or melting shows that the freezing of water (with
decreasing temperature) plays a role of sink for the liquid phase water while the melting
with increasing temperature being a source for the liquid phase.
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A simple one-dimensional analytical model is employed to determine the vertical distribution
of the temperature of bulk porous medium.

∂

∂t
(Tpm − Tb) = ∂

∂z

(
kpm
cpm

∂(Tpm − Tb)
∂z

)
(2.112)

where Tpm is the temperature of the bulk porous medium, kpm and cpm are the bulk thermal
conductivity and heat capacity, respectively, and it is assumed that the temperature at
depth is given as Tb and the surface temperature is same as the atmospheric temperature
(Tatm) such that

Tpm(z = 0, t) = Tatm(t) (2.113)
Tpm(z � 0, t) = Tb (2.114)

The analytical solution of the equation is given as follows:

Tpm(z, t) = Tb + z√
4πκ

∫ t

τ=0

∂Tatm(τ)
∂τ

erfc
(

z√
4κ(t− τ)

)
dτ

= Tb + z√
4πκ

∫ t

τ=0
Tatm(τ)e

−z2/4κ(t−τ)

(t− τ)3/2 dτ

(2.115)

where the thermal diffusivity κ is defined as kpm/cpm.

2.6.3 Dual Continuum Freezing and Thawing of Pore Water

Groundwater flow and with freezing and thawing in the three-dimensional porous medium
domain (Equation 2.108) is extended to include a dual continuum linked by a fluid exchange
term:

wd
∂

∂t
(ρwθsSw,d + ρwθsSice,d) = −∇ · (wdρwqd) + ρwQd + ρwΓd (2.116)

The fluid exchange term is proportional to the head difference between the two domains, the
relative hydraulic conductivity of the interface, and the ice content of the porous medium
domain:

Γd = α∗wdKa(1− Sice)kr(ψd − ψ) (2.117)

Partitioning of water between solid and liquid phases in the porous medium domain is
assumed to be determined only by the temperature (which is a function of time at a given
point), as given previously in Equation 2.109. Within the dual continuum domain, two
options for freezing and thawing exist. The first option uses the same formulation as used
in the porous medium domain (default). The second option gives the rate of ice-formation
after Mohammed et al. (2020) and is controlled by the soil matrix temperature (T ), and a
specified thermal transfer coefficient (α∗) according to

∂θice,d
∂t

= −α∗T (2.118)
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The thermal transfer coefficient α∗ [T−1 °C−1] may be calculated by

α∗ = α∗wdλm
ρiceLiwd

, (2.119)

where Li (= 335,000 J kg−1) is the enthalpy of fusion for water, λm [W m−1 °C−1] is
the thermal conductivity of the domain interface, which is assumed equal to the thermal
conductivity of the matrix domain, and α∗wd is the exchange coefficient that is defined based
on the geometry of heat transfer between domains (Equation 2.79).

2.7 Solute Transport

2.7.1 Governing Equations

We present here the basic subsurface transport equation solved by HydroGeoSphere which
is expanded in its use to incorporate, among other features, discrete fractures, a second
porous continuum, wells, tile drains, and the surface flow domain.

2.7.1.1 Porous Medium

Three-dimensional transport of solutes in a variably-saturated porous matrix is described by
the following equation:

−∇ · wm (qC − θsSwD∇C) + [wmθsSwRλC]par +
∑

Ωex +Q′bcCbc

= wm

[
∂(θsSwRC)

∂t
+ θsSwRλC

]
(2.120)

where C is the solute concentration [M L−3] of the current species amongst possibly multiple
species and λ is a first-order decay constant [L−1]. The subscript par designates parent
species for the case of a decay chain. For the case of a straight decay chain, there is only
one parent species, as might be the case for a radioactive decay chain; however, for degrading
organic species, a particular species may have several parent sources through a complex
degradation process.

The terms Q′bc and Cbc are the volumetric fluid (water) flow rate per unit volume [L3 T−1

L−3] and the solute concentration [M L−3] at a boundary or at a fluid injection or withdrawal
location, respectively. The volumetric flow rate Q′bc is positive for an inflow boundary or
an injection location and it is negative for an outflow boundary or a withdrawal location.
Furthermore, for an outflow boundary or a withdrawal location, the boundary concentration
Cbc is equal to the solute concentration C.

The assumption of fluid incompressibility is made in Equation 2.120. The dimensionless
retardation factor, R, is given by (Freeze and Cherry, 1979):

R = 1 + ρb
θsSw

K ′ (2.121)
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where ρb is the bulk density of the porous medium [M L−3] and K ′ is the equilibrium
distribution coefficient describing a linear Freundlich adsorption isotherm [M−1 L3]. Note
that for variably-saturated conditions, the water saturation appears in the definition of R.

The hydrodynamic dispersion tensor D [L2 T−1] is given by (Bear, 1972):

θsSwD = (αl − αt)
qq
|q| + αt|q|I + θs Sw τDfree I (2.122)

where αl and αt are the longitudinal and transverse dispersivities [L], respectively, |q| is the
magnitude of the Darcy flux, τ is the matrix tortuosity [-], Dfree is the free-solution diffusion
coefficient [L2 T−1] and I is the identity tensor. The product τDfree represents an effective
diffusion coefficient for the matrix. In the unsaturated zone, the tortuosity is allowed to vary
with the water saturation, Sw, according to the Millington-Quirk relationship (Millington
and Quirk, 1961), given by:

τ = (Swθs)7/3/θ2
s (2.123)

In Equation 2.120, Ωex represents the mass exchange rate of solutes per unit volume [M
L−3 T−1] between the subsurface domain and all other types of domains supported by the
model. Currently, these additional domains are surface, wells, tile drains, channels, discrete
fractures, immobile second continuum and mobile dual continuum. The definition of Ωex
depends on the conceptualization of solute exchange between the domains and will be defined
later. In the equations shown for the other domains, we will use the notation ex=f, ex=im,
ex=d, ex=w, ex=t, ex=c ex=o, for the fracture, immobile continuum, dual continuum, well,
tile drain, channel and surface domains, respectively.

2.7.1.2 Discrete Fractures

The equation for two-dimensional solute transport in a variably-saturated fracture follows
from the equation describing solute transport in a fully-saturated fracture (Tang et al., 1981;
Sudicky and McLaren, 1992; Therrien and Sudicky, 1996). Its form is:

−∇ · (wfqfCf − wfSwfDf∇Cf ) + wf [RfλfCf ]par − wfΩf + wfQ
′
bcCbc =

wf

[
∂(SwfRfCf )

∂t
+ SwfRfλfCf

]
(2.124)

where Cf is the concentration in a fracture [M L−3], λf is a first-order decay constant [L−1]
and Df is the hydrodynamic dispersion tensor of the fracture [L2 T−1]. An expression similar
to Equation 2.122 can be used to represent Df , where dispersivities and fluxes correspond
to those of the fracture and the fracture porosity is assumed to be unity. The definition of
the boundary terms Q′bc and Cbc is similar to that presented above for the porous medium.

The dimensionless retardation factor Rf is defined according to (Freeze and Cherry, 1979):

Rf = 1 +
2K ′f
wf

(2.125)
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where K ′f is a fracture-surface distribution coefficient [L], which is defined as the ratio
between the mass of solute on the solid phase per unit area of an assumed planar fracture
surface over the concentration of a solute in solution.

2.7.1.3 Double Porosity

The model can simulate double-porosity transport with the classical first-order theory (see
Sudicky (1990)), which divides the subsurface domain into a mobile and an immobile region.
The formulation used here for double-porosity is restricted to steady-state flow conditions.
It is assumed that the porous medium represents the mobile domain, where flow is described
by Equation 2.1 and solute transport is described by Equation 2.120. It is also assumed
that there is no flow in the immobile domain, therefore no equation is required for immobile
flow, and solute mass balance is given by:

∂(θImmCImm)
∂t

− ΩImm = 0 (2.126)

where CImm is the solute concentration in the immobile region [M L−3], θImm is the porosity
of the immobile region [-] and ΩImm represents the solute exchange flux between the mobile
and immobile zones [M L−3 T−1].

2.7.1.4 Isotopic Fractionation

The model can simulate isotope fractionation, using a first-order kinetic formulation that
is mathematically similar to double-porosity transport. In analogy to double-porosity, we
assume here that the mobile domain represents the water phase and the immobile domain is
associated with the solid, or rock, phase.

Similarly to double-porosity transport, the formulation used here for isotope fractionation
is restricted to steady-state flow conditions. Fractionation from the water phase is also
restricted to a single solid (or rock) phase. It is assumed that the porous medium represents
the water domain, where flow is described by Equation (2.1) and isotope transport is
described by Equation (2.120). It is also assumed that there is no isotope flow in the solid
phase, therefore no equation is required for flow in the solid phase.

Mass balance for the isotope in the solid phase is given by:

∂CImm
∂t

− ΩImm
xr

= 0 (2.127)

where CImm is the isotope concentration in the solid, or immobile region [M L−3], ΩImm
represents here the isotope exchange flux between the mobile (water) and immobile (solid)
zones [M L−3 T−1], and xr is the dimensionless mass ratio of the isotope in the solid phase
to that in the water phase, for a unit volume of water-saturated rock of constant porosity.
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2.7.1.5 Dual Continuum

When the dual continuum option is used, advective-dispersive solute transport can be
simulated in a second continuum based on the formulation presented by Gerke and van
Genuchten (1993). Note that, as opposed to the double-porosity option, the dual continuum
option is not restricted to steady-state flow conditions because it allows transient fluid ex-
change between the two interacting continua. Also, fluid flow and advective-dispersive solute
transport can be simultaneously solved in the porous medium and the second continuum.
Three-dimensional transport of solutes in a variably-saturated dual continuum is described
by:

−∇ · wd (qdCd − θsdSwdDd∇Cd) + [RdλdCd]par − wdΩd ±Qcd +Q′bcCbc =

wd

[
∂(θsdSwdRdCd)

∂t
+ θsdSwdRdλdCd

]
(2.128)

where Cd is the solute concentration in the dual continuum [M L−3] and λd is a first-order
decay constant [L−1]. Solute exchange with the outside of the simulation domain, as specified
from boundary conditions, is represented by Qcd [M L−3 T−1] which represents a source
(positive) or a sink (negative) to the dual continuum. The definition of the boundary terms
Q′bc and Cbc is similar to that presented above for the porous medium.

The dimensionless retardation factor, Rd, is given by (Freeze and Cherry, 1979):

Rd = 1 + ρbd
θsdSwd

K ′d (2.129)

where ρbd is the bulk density of the dual continuum [M L−3] and K ′d is the equilibrium
distribution coefficient describing a linear Freundlich adsorption isotherm [M−1 L3]. Note
that for variably-saturated conditions, the water saturation appears in the definition of Rd.

The hydrodynamic dispersion tensor Dd [L2 T−1] is given by (Bear, 1972):

θsdSwdDd = (αld − αtd)
qdqd
|qd|

+ αtd|qd|I + θsd Swd τdDfree I (2.130)

where αld and αtd are the longitudinal and transverse dispersivities [L], respectively, |qd|
is the magnitude of the Darcy flux, τd is the dual continuum tortuosity [-], Dfree is the
free-solution diffusion coefficient [L2 T−1] and I is the identity tensor. The product τdDfree

represents an effective diffusion coefficient for the dual continuum. Recall from the previous
discussion on flow in the unsaturated zone that the tortuosity is a function of the degree of
saturation according to Equation 2.123.

2.7.1.6 Wells

One-dimensional solute transport along the axis of a well is described by:

−∇ · πr2
s

(
qwCw − SwwDw∇Cw

)
+ πr2

s [λCw]par + πr2
sQ
′
bcCbcδ(l − l′)− πr2

sΩw =
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πr2
s

∂Cw
∂t

+ πr2
sλCw (2.131)

where Cw is the solute concentration in the well [M L−3], qw is the fluid flux along the
well axis [L T−1]. The term Q′bc represents the injection or withdrawal flow rate [L3 T−1],
Cbc is the concentration of injection or withdrawal water [M L−3] and l′ is the injection or
withdrawal location along the well. For the case of a withdrawal well, Cbc is equal to the
concentration in the well Cw at the withdrawal location.

The dispersion coefficient for the well, Dw [L2 T−1] is equal to (Lacombe et al., 1995):

Dw = r2
sqw

2

48Dfree
+Dfree (2.132)

2.7.1.7 Tile Drains

One-dimensional solute transport along the axis of a tile drain is described by:

−∇ ·A
(
qtCt − SwtDt∇Ct

)
+A [λCt]par −AΩt +AQ′bcCbcδ(l − l′) =

∂ACt
∂t

+AλCt (2.133)

where Ct is the solute concentration in the tile drain [M L−3] and qt is the fluid flux along
the drain axis [L T−1]. The term Q′bc represents the withdrawal flow rate [L3 T−1], Cbc is the
concentration of withdrawal water [M L−3], which is equal to the concentration in the tile
drain Ct at the withdrawal location, and l′ is the withdrawal location along the tile drain.
Contrary to a well, water can only be withdrawn from a tile drain and cannot be injected.

The dispersion coefficient for the tile drain, Dt [L2 T−1] has a form similar to that for a
one-dimensional well and is equal to:

Dt = r2
tqt

2

48Dfree
+Dfree (2.134)

where rt is an equivalent radius for a tile drain of cross-section A.

2.7.1.8 Surface Domain

The equation for two-dimensional transport of solutes along the surface domain is written as

−∇(qoCo −Doφoho∇Co) + [φohoRoλCo]par − doΩo + doQ
′
bcCbc
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= ∂

∂t
(φohoRoCo) + φohoRoλCo (2.135)

where Co is the concentration in water on the surface domain [M L−3], Do is the hydrodynamic
dispersion tensor of the surface flow domain [L2 T−1] and ∇ is the vertically integrated
two-dimensional gradient operator. An expression similar to Equation 2.122 is used to
represent the dispersion coefficient Do and the retardation factor Ro is represented by an
expression similar to Equation 2.125. The definition of the boundary terms Q′bc and Cbc is
similar to that presented above for the porous medium.

2.7.1.9 Channels

One-dimensional solute transport along the axis of a channel is described by:

−∇ ·A
(
qcCc −Dc∇Cc

)
+A [λCc]par −AΩc +AQ′bcCbc

= ∂ACc
∂t

+AλCc (2.136)

where Cc is the solute concentration in the channel [M L−3] and qc is the fluid flux along
the channel axis [L T−1]. The definition of the boundary terms Q′bc and Cbc is similar to
that presented above for the porous medium.

The dispersion coefficient for the channel, Dc [L2 T−1] has a form similar to that for a
one-dimensional well and is equal to:

Dc = r2
cqc

2

48Dfree
+Dfree (2.137)

where rc is an equivalent radius for a channel of cross-section A.

2.8 Solute Transport Coupling

Similarly to fluid flow, two different approaches are used to define the solute exchange terms
Ωex between two different domains. The first approach is based on a numerical superposition
principle (see Therrien and Sudicky (1996)), where continuity of solute concentration is
assumed between the two domains concerned, which corresponds to instantaneous equilibrium
between the two domains. In that case, the Ωex term does not need to be evaluated explicitly
in the model and we do not present its definition. However, the solute exchange flux between
domains can be computed after the numerical solution at a given time step. This approach
corresponds to the common node scheme.

The second method is more general because it does not assume continuity of concentration
between two domains, but uses a first-order expression to approximate Fickian transport
to transfer solute from one domain to the other. This second approach corresponds to the
dual-node scheme mentioned later in the manual.
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Table 2.2: Types of Coupling and Dimensionality Solute Transport.
Coupling

Domains Common Dual
Porous medium - Discrete fractures (2-D)

√ √

Porous medium - Second continuum (3-D)
√

Porous medium - Double porosity (3-D)
√

Porous medium - Wells (1-D)
√ √

Porous medium - Tile drains (1-D)
√ √

Porous medium - Surface (2-D)
√ √

Porous medium - Channel (1-D)
√ √

Table 2.2 summarizes the types of solute transport coupling currently available in Hydro-
GeoSphere. Solute exchange between the subsurface porous medium and the immobile
region (double-porosity option), and between the subsurface porous medium and a dual
continuum is only simulated by the dual-node approach. For solute exchange between the
domains, both the common-node approach as well as the dual-node approach are available
options for coupling. We present here the definition of the exchange term for the dual-node
approach.

2.8.1 Mobile - Immobile Region Coupling

Solute exchange between the mobile and immobile region of a porous medium (double-
porosity approach) is given by:

ΩImm = αImm(C − CImm) (2.138)

where αImm is a first-order mass transfer coefficient between the mobile and immobile regions
[T−1].

For fractured porous media, Sudicky (1990) presents relationships for the mass transfer
coefficient as a function of fracture geometry. For example, if a porous medium is highly
fractured and the shape of the porous medium block delineated by the fracture network can
be approximated as spheres, the mass transfer coefficient can be approximated by:

αImm = 15θImmD
∗
Imm

r2
0

(2.139)

where D∗Imm is the effective diffusion coefficient in the immobile region and r0 is the radius
of a representative sphere [L]. Another expression can be given for the case of a system of
parallel fractures, with a uniform fracture spacing equal to Bf and where the porous matrix
blocks are prismatic slabs:

αImm = 3θImmD
∗
Imm

(Bf/2)2 (2.140)
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2.8.2 Isotopic Fractionation Coupling

Isotopic exchange between the mobile (water) and immobile (solid) region of a porous
medium is similar to the double-porosity approach and is given by:

ΩImm = xrkr(αrC − CImm) (2.141)

where kr is a reverse fractionation rate [L−1] and krαr is the forward reaction rate with αr
being the isotope fractionation factor between water and the solid phase. Concentration
CImm describes here the isotopic concentration in the solid phase.

2.8.3 Dual Continuum Subsurface Coupling

When the dual-node approach is chosen to represent simultaneous transport in the subsurface
porous medium and a dual continuum (representing fractures), the solute exchange term
can be defined as (Gerke and van Genuchten, 1993):

Ωd = −umC − udCd (2.142)

where:

um = d∗Γdφ− αswmθsSw (2.143)

and:

ud = (1− d∗)Γdφ∗ + αswmθsSw (2.144)

In Equation 2.143 and 2.144, αs is a mass transfer coefficient [T−1] resembling that defined
for the double porosity option. We further define the following variables:

d∗ = 0.5
(

1− Γd
|Γd|

)
(2.145)

and

φ = wm
θsSw
θtot

; φ∗ = (1− wm)θsdSwd
θtot

; θtot = wmθsSw + (1− wm)θsdSwd (2.146)

For the case where the hydraulic heads of the porous medium and the second continuum are
equivalent, then, according to Equation 2.78, the term Γd above becomes equal to 0 and
the solute exchange given by term Ωd reduces to a diffusion-type exchange between the two
domains, similar to that for the double porosity medium (see Equation 2.138).

2.8.4 Surface Subsurface Coupling

When the dual node approach is chosen to represent simultaneous transport in the subsurface
and the surface domain, the solute exchange term Ωo [M L−3 T−1] is defined as follows

doΩo = doΓoCups +
( |doΓo|αc + θsSwτDfree

lexch

)
(C − Co) . (2.147)
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The term αc [L] is the coupling dispersivity between the subsurface and surface and the
upstream concentration Cups [M L−3] is defined as

Cups =
{
C when flow is from the subsurface to the surface (exfiltration)
Co when flow is from the surface to the subsurface (infiltration)

(2.148)

where C is the subsurface concentration and Co is the surface concentration.

2.9 Solute Transport Boundary Conditions

2.9.1 Subsurface

Boundary conditions for subsurface transport include the following: first-type (Dirichlet)
boundaries of prescribed concentration, prescribed mass flux or third-type (Cauchy) bound-
ary conditions. For chain-decay of solutes, Bateman’s equation is used to prescribe the
concentrations for the daughter products. The boundary conditions can also be allowed to
vary in time. Details of the implementation of these boundary conditions in the model are
given in the next chapter.

2.9.2 Surface

Boundary conditions to the surface flow system include at the moment first-type (Dirichlet)
boundaries of prescribed concentration.

2.10 Colloid Transport

2.10.1 Subsurface - Porous Medium and Dual Continuum

HGS can simulate colloid transport, for example bacteria or viruses, based on (Bradford
et al., 2009) who presented a conceptual model and governing equations to simulate colloid
transport in a dual-permeability system. The dual-permeability system contains two regions
and, in each region, colloids can be present in the liquid phase and also attached to the
solid phase. Colloid transfer from the liquid to the solid phase (attachment or retention)
and from the solid to the liquid phase (detachment) is represented by kinetic terms in the
governing equation for transport.

Colloid attachment to a solid phase and detachment from a solid phase can only be simulated
for the porous medium domain and for the dual continuum domain, if a dual continuum
domain is activated. For other domains, colloids can be present in the liquid phase but they
do not undergo attachment nor detachment. For these other domains, the relevant governing
equation presented previously (see Section 2.7) applies for the colloid in the liquid phase.
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The following equation, which is a modified form of transport Equation (2.120), describes
colloid transport in the fluid phase of the porous medium:

wm

[
∂ (θsSwC)

∂t
+ λcθsSwC

]
=

wm

[
∂

∂xi

(
θDij

∂C

∂xj

)
− (∂qiC)

∂xi
− θsSwkretC + ρbkdetS

]
+ Ωd (2.149)

where C [Nc L−3], with Nc being the number of colloids, is the liquid phase concentration of
colloids in the porous medium expressed per unit volume of liquid, λc [T−1] is a first-order
colloid decay rate in the fluid phase, kret [T−1] is a first-order colloid retention rate coefficient
on the solid phase, kdet [T−1] is a first-order colloid detachment coefficient from the solid
phase.

The mass balance equation for colloid on the solid phase of the porous medium is

wm

[
∂ (ρbS)
∂t

+ λsρbS

]
= wmθsSwkretC − wmρbkdetS − ρbktS (2.150)

where S [Nc M−1] is the solid phase concentration of colloids in the porous medium, expressed
per unit mass of solids, λs [T−1] is a first-order colloid decay rate in the solid phase, and
kt [T−1] is a coefficient for transfer of colloids from the solid phase of the porous medium
domain to the solid phase of the dual domain. That transfer is only applicable when a dual
domain is present.

Similarly to the porous medium, the transport equation 2.128 for the dual continuum is
modified for colloid transport

wd

[
∂ (θsdSwdCd)

∂t
+ λcdθsdSwdCd

]
=

wd

[
∂

∂xi

(
θdDijd

∂Cd
∂xj

)
− (∂qidCd)

∂xi
− θsdSwdkretdCd + ρbdkdetdSd

]
− Ωd (2.151)

where Cd [Nc L−3] is the liquid phase concentration of colloids in the dual continuum
expressed per unit volume of liquid, λcd [T−1] is a dual continuum first-order colloid decay
rate in the fluid phase, kretd [T−1] is a dual continuum first-order colloid retention rate
coefficient on the solid phase, kdetd [T−1] is a dual continuum first-order colloid detachment
coefficient from the solid phase.

The dual continuum mass balance equation for colloid on the solid phase is

wd

[
∂ (ρbdSd)

∂t
+ λsdρbdSd

]
= wdθsdSwdkretdCd − wdρbdkdetdSd + ρbktS (2.152)

where λsd [T−1] is a dual continuum first-order colloid decay rate in the solid phase.
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The Ωd [Nc L−3 T−1] term describing the liquid phase mass exchange of colloids between
porous medium and dual domains is defined as

Ωd = ωexwmθsSw (Cd − C) (2.153)

where ωex [T−1] is a coefficient for liquid phase colloid exchange between the porous medium
and dual domains.

2.11 Thermal Energy Transport

2.11.1 Porous Medium

The general equation for variably-saturated subsurface thermal energy transport is given by:

−∇ · wm [ρwcwqT − (kb + ρwcwθsSwD)∇T ] +
∑

ρwcwΩex +Q′bcTbcρwcw =

wm
∂

∂t
[θsρaca(1− Sw)Ta + θsρwcwSwT + (1− θs)ρscsTs] (2.154)

where c is specific heat [L2 T−2 Θ−1], T is the fluid temperature [Θ], kb is the bulk thermal
conductivity [M L T−3 Θ−1], and Ω is the thermal surface/subsurface interaction term
[M L−1 T−3] that is discussed in Section 2.11.9. Subscript s denotes the solid phase, subscript
w represents the aqueous phase and subscript a represents the air phase.

The terms Q′bc and Tbc are, respectively, the volumetric fluid (water) flow rate per unit volume
[L3 T−1 L−3] and the temperature [Θ] at a boundary or at a fluid injection or withdrawal
location. The volumetric flow rate Q′bc is positive for an inflow boundary or an injection
location and negative for an outflow boundary or a withdrawal location. Furthermore, for
an outflow boundary or a withdrawal location, the boundary temperature Tbc is equal to the
fluid temperature T .

On the right-hand side of the equation, Ta and Ts are the air and solids temperature,
respectively. Assuming that a representative elementary volume is small enough such that
Ta = T = Ts, the equation becomes

−∇ · wm [ρwcwqT − (kb + ρwcwθsSwD)∇T ] +
∑

ρwcwΩex +Q′bcTbcρwcw =

wm
∂

∂t
[{θsρaca(1− Sw) + θsρwcwSw + (1− θs)ρscs}T ] (2.155)

When needed, bulk parameters, with the exception of thermal conductivity, are calculated
by a volumetric average approximation. For example, bulk density ρb is defined as:

ρb = (1− θs)ρs + Swθsρw + (1− Sw)θsρa (2.156)
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The bulk thermal conductivity term (kb) can either be specified, or calculated. It represents
the thermal conductivity of the entire subsurface, which can include the matrix solids, the
aqueous phase and air. Specifying a bulk thermal conductivity may be appropriate for
saturated flow conditions, when the phase composition of the subsurface does not vary with
space or time; however under variably-saturated flow conditions, the saturations of air and
water in the subsurface may change with time, and thus the thermal conductivity may
also change. Calculating a three-phase thermal conductivity is not straightforward; several
approaches have been presented, and no one method has proven to consistently provide more
representative solutions than others (Chaudhary and Bhandari, 1968; Markle et al., 2006).

Three methods of calculating the bulk thermal conductivity are available in HydroGeo-
Sphere. The first method, which is the default, uses a volumetric average approximation
similar to that employed in SUTRA (Voss, 1984):

kb = (1− θs)ks + Swθskw + (1− Sw)θska (2.157)
The second approximation extends the accepted two-phase thermal conductivity calculation
provided by Sass et al. (1971) by calculating both a dry and saturated thermal conductivity
(kdry and ksat, respectively), and then determining the bulk thermal conductivity using a
geometric interpolation between the dry and saturated thermal conductivities based on the
degree of water saturation:

kdry = k(1−θs)
s ka

θs (2.158)

ksat = k(1−θs)
s kw

θs (2.159)

kb = Swksat + (1− Sw)kdry (2.160)
The third method uses the following non linear relationship developed by Côté and Konrad
(2005):

kb = kdry (ksat − kdry) kbr (2.161)
where kbr is a relative thermal conductivity given by

kbr = kCSw
1 + (kC − 1)Sw

(2.162)

and where kC is a fitting parameter. Typical values of kC are 3.55 for a medium to fine
sand, and 1.9 for silty and clayey soils (Côté and Konrad, 2005).

2.11.2 Discrete Fractures

The equation for two-dimensional thermal energy transport in a discrete fracture is:
−∇ · [wfρwcwqfTf − (Swfkw + (1− Swf )ka + ρwcwSwfDf )∇Tf ] + wfρwcwΩf

+wfQ′bcTbcρwcw = ∂

∂t
[wf {ρaca(1− Swf ) + ρwcwSwf}Tf ] (2.163)

where Tf is the fluid temperature in the discrete fracture [Θ]. The definition of the boundary
terms Q′bc and Tbc is similar to that presented above for the porous medium.
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2.11.3 Dual Continuum

The general equation for variably-saturated subsurface thermal energy transport in a dual
continnum is given by:

−∇ · wd [ρwcwq)dTd − (kb + ρwcwθsdSwdDd)∇Td] + ρwcwΩd +Q′bcTbcρwcw =

wd
∂

∂t
[θsdρaca(1− Swd)Ta + θsdρwcwSwdTd + (1− θsd)ρscsTs] (2.164)

where Td is the fluid temperature in the dual continuum [Θ]. The definition of the boundary
terms Q′bc and Tbc is similar to that presented above for the porous medium.

2.11.4 Wells

The equation for one-dimensional thermal energy transport along the axis of a well is:

−∇ · πr2
s [ρwcwqwTw − (Swwkw + (1− Sww)ka + ρwcwSwwDw)∇Tw] + πr2

sρwcwΩw

+πr2
sQ
′
bcTbcρwcw = ∂

∂t

[
πr2

s {ρaca(1− Sww) + ρwcwSww}Tw
]

(2.165)

where Tw is the fluid temperature in the well [Θ]. The definition of the boundary terms Q′bc
and Tbc is similar to that presented above for the porous medium. Note that kw is here the
thermal conductivity of water.

2.11.5 Tile Drain

The equation for one-dimensional thermal energy transport along the axis of a tile drain is:

−∇ ·A [ρwcwqtTt − (Swtkw + (1− Swt)ka + ρwcwSwtDt)∇Tt] +AρwcwΩt

+AQ′bcTbcρwcw = ∂

∂t
[A {ρaca(1− Swt) + ρwcwSwtw}Tt] (2.166)

where Tt is the fluid temperature in the tile drain [Θ]. The definition of the boundary terms
Q′bc and Tbc is similar to that presented above for the porous medium.

2.11.6 Channel

The equation for one-dimensional thermal energy transport along the axis of a channel is:

−∇ ·A [ρwcwqcTc − (kw + ρwcwDc)∇Tc] +AρwcwΩc

+AQ′bcTbcρwcw = A
∂ρwcwTc

∂t
(2.167)

where Tt is the fluid temperature in the channel [Θ]. The definition of the boundary terms
Q′bc and Tbc is similar to that presented above for the porous medium.
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2.11.7 Surface Water

The depth-averaged equation describing thermal energy transport in surface water is similar
to that for solute transport in the surface water and is given by:

∇[qoρwcwdoTo − (kw + Doρwcw)do∇To] + Eatm + doQ
′
bcTbcρwcw

+doρwcwΩo = ∂ρwcwdoTo
∂t

(2.168)

where To is the temperature of the surface water [Θ] and Eatm [M T−3] represents the
atmospheric inputs to the surface thermal energy system. The definition of the boundary
terms Q′bc and Tbc is similar to that presented above for the porous medium.

In Equation 2.168, the overland water flux (qo) is calculated from the numerical solution of
the Diffusion-wave equation. These derivations for thermal energy transport are hydrodynam-
ically, and not thermodynamically based, and are not applicable to high temperature, high
pressure hydrothermal conditions, but are valid for most shallow groundwater/surface water
systems. In addition, the surface thermal regime is depth-averaged and cannot represent
thermal stratification in surface water bodies.

2.11.7.1 Atmospheric Inputs

This section describes the atmospheric input source term (Eatm in Equation 2.168) that can
be assigned to the surface water flow domain for thermal energy transport simulations. The
atmospheric inputs from CLASS (Verseghy, 1991; Verseghy et al., 1993) are used to determine
the surface heat fluxes in HydroGeoSphere. CLASS is a well established land surface
scheme, and the atmospheric inputs incorporated into CLASS have been demonstrated to
be representative (Verseghy, 1991; Verseghy et al., 1993). In addition to the reliability of
the CLASS approach, the equations used for atmospheric inputs are also computationally
inexpensive, relative to other atmospheric models, and thus are appropriate for implementing
into HydroGeoSphere. The total atmospheric input to the surface thermal energy system
can be expressed as:

Eatm = K∗ + L∗ +QH +QE (2.169)

where K∗ is the net shortwave radiation, L∗ is the net longwave radiation, QH is the sensible
heat flux and QE is the latent heat flux . All of the equations used here are taken from
CLASS (Verseghy, 1991; Verseghy et al., 1993) with the exception of the incoming longwave
radiation calculation, which is adapted from Fassnacht et al. (2001). All of the atmospheric
thermal inputs are calculated explicitly, and are treated as a source/sink term in the thermal
energy transport equation for the surface regime. A limitation to this approach is that
the model does not provide feedback to the atmosphere; however, given the scale of the
atmospheric regime, it is assumed that the feedback from the smaller hydrologic domains is
negligible.
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Shortwave radiation is the radiant energy in the visible, near-ultraviolet and near-infrared
wavelengths from the atmosphere to the Earth’s surface, broadly defined as between 0.1 and
5.0 micrometers. The equation used to calculate the thermal energy input to the surface
from net shortwave radiation follows Verseghy (1991); Verseghy et al. (1993) and is:

K∗ = (1− αg)K↓ (2.170)

where αg is the ground surface albedo, and K↓ is the incoming shortwave radiation. Ground
surface albedo is dependent on the water content of the surficial soil, as formulated by Idso
et al. (1975), and is given by:

αg = Sw(1−θ)(αsat−αdry)
0.20 + αdry for Sw(1− θ) < 0.20

αg = αsat for Sw(1− θ) ≥ 0.20
(2.171)

where αsat and αdry are the limiting wet and dry soil albedoes.

A variation of this equation is also available in HydroGeoSphere to account for cloud and
canopy cover (given by Cc):

K∗ = (1− Cc)(1− αg)K↓ (2.172)

The cloud and canopy cover term (Cc) varies between 0 and 1 and represents the fraction
of the sky that is blocked by either clouds or vegetation from the ground surface. Net
Longwave Radiation (L∗) Longwave radiation is the infrared energy emitted by the earth
and atmosphere at wavelengths between about 5 and 25 micrometers. The equation for net
longwave radiation to the surface following (Verseghy, 1991; Verseghy et al., 1993) is:

L∗ = L↓ − σT 4
g (2.173)

where L↓ is the incoming longwave radiation, σ is the Steffan-Boltzmann constant, and Tg is
the ground surface temperature (temperature of the surface regime). In the original CLASS
formulation, the incoming radiation term is specified as an input parameter. However,
due to the lack of longwave radiation data (incoming longwave radiation is not routinely
measured), incoming longwave radiation can also be calculated in HydroGeoSphere using
the formulation given by Fassnacht et al. (2001):

L↓ = εatσT
4
a (2.174)

where Ta is the air temperature, εat is the integrated emissivity of the atmosphere and
canopy, calculated by:

εat = (0.53 + 0.2055√ea)(1 + 0.40Cc) (2.175)

where ea is the near surface vapour pressure. Emissivity is limited so that it cannot exceed
1.0, ensuring that the incoming longwave radiation is not overestimated.

Sensible heat flux represents the movement of energy from the Earth to the air above
typically via conduction. The equation used for sensible heat flux follows Verseghy (1991);
Verseghy et al. (1993) and is given by:

QH = ρacaVacD[Ta − Tg] (2.176)
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where ρa is the density of the air, ca is the specific heat of the air, Va is the wind speed and
cD is the drag coefficient.

Latent heat flux represents the energy transfer during the evaporation/condensation process.
There are three methods of accounting for evaporation in the flow solution. The quantity
of water evaporated/condensed in the flow solution provides the basis for the amount of
energy transferred between the atmospheric and hydrologic regimes for latent heat flux.
As such, the evaporation rate used in the flow solution must be linked to the latent heat
flux term used to calculate the atmospheric thermal energy inputs. The first, and most
simplistic method of accounting for evaporation, is to simply reduce the precipitation rate
applied to the surface of the domain by the evaporation rate. By not explicitly specifying
or calculating the evaporation rate in HydroGeoSphere, the latent heat flux must be
determined independently. In this case the equation used by CLASS (Verseghy, 1991;
Verseghy et al., 1993) is used, given by:

QE = LV ρaVacD[SHa − SHg] (2.177)

Where LV is the latent heat of vaporization, SHa is the specific humidity of the air, and
SHg is the specific humidity of the ground surface. Specific humidity of the ground surface
is calculated using the same formulation given by Verseghy (1991); Verseghy et al. (1993):

SHg = h · SHsat[Tg] (2.178)

Where h is the relative humidity of the air in the surface soils, calculated by:

h = exp
[
−gψg
RwTg

]
(2.179)

and SHsat[Tg] is the saturation specific humidity at Tg, given by:

SHsat[Tg] = 0.622esat[Tg]
pa − 0.378esat[Tg]

(2.180)

In these equations, g represents the acceleration due to gravity, ψg is the soil-water suction
at the surface, Rw is the gas constant for water vapour, esat[Tg] is the saturation vapour
pressure at the ground surface and pa is the air pressure. Evaporation can also be specified
or calculated in HydroGeoSphere. When evaporation is specified, the evaporation rate is
input to HydroGeoSphere and is subtracted from the incoming precipitation throughout
the simulation. Internally calculating the evaporation rate is a more complex approach, based
on the empirical Hargreaves equation for determining the potential evapotranspiration, and
then calculating the actual evapotranspiration as a combination of plant transpiration and
evaporation from the surface and the subsurface domains. The equations for this approach
are given in detail by Li et al. (2008). Whether the evaporation is specified or calculated,
the latent heat flux is then determined from the evaporation rate used in the flow solution,
ensuring continuity between the flow and thermal transport simulations. The latent heat
flux equation for a specified or calculated evaporation rates is:

QE = LVEfluxρw (2.181)

where Eflux is the specified or calculated evaporation rate.
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2.11.8 Thermal Energy Transport Boundary Conditions

Boundary conditions for thermal energy transport include the following: first-type (Dirichlet)
boundaries of prescribed concentration, prescribed energy flux or third-type (Cauchy)
boundary conditions. The boundary conditions can also be allowed to vary in time. Details
of the implementation of these boundary conditions in the model are given in the next
chapter.

2.11.9 Thermal Energy Coupling

The coupling of the surface and subsurface thermal continua is similar to that used for
advective-dispersive contaminant transport in HydroGeoSphere. There are two methods
of coupling the surface and subsurface continua, the common node and the dual node
approaches. The common node approach is based on the assumption of continuity of
temperature at the surface/subsurface interface. The dual node approach on the other hand
uses a first-order flux relation to transfer heat from one domain to the other. The equation
for the dual-node coupling of the surface and subsurface thermal equations follows Brookfield
et al. (2009) and is given by:

Ωo = ρwcwTupsΓo + αoρdwncdwn(T − To) (2.182)
where Γo [T−1] represents the aqueous exchange flux between the surface and subsurface
(the amount of water flowing between the two regimes; see Equation 2.80) and αo [T−1] is
an energy transfer coefficient determined by the thermal dispersivity over the depth of the
surface/subsurface exchange zone. The subscript ups represents the “upstream” direction
and the subscript dwn represents the “downstream” direction, that is,

Tups =
{
T, Γo > 0
To, Γo < 0 and ρdwncdwn =

{
ρwcw, Γo > 0
ρbcb, Γo < 0

The most significant difference between the solute and the thermal transport coupling
equations is the treatment of mass/energy transfer between the surface and subsurface. The
downstream parameters are used to differentiate between the amount of thermal energy
required to change the temperature of the surface and the subsurface domains, respectively.
When the diffusive gradient is transferring thermal energy to the subsurface, the bulk heat
capacity and density parameters regulate how much the temperature of the bulk subsurface
changes given the amount of thermal energy added. Conversely, when the diffusive gradient
is transporting thermal energy to the surface, the aqueous heat capacity and density terms
regulate how much the surface water temperature increases given the thermal energy inputs.
As the bulk and aqueous heat capacity and density terms can be significantly different, the
amount of energy required to change the temperature of the surface and subsurface regimes
can also be different. For this formulation, the downstream location (where the energy is
diffusing to) determines how much thermal energy is required to reduce the thermal gradient
between regimes. The movement of a solute between the two regimes is different from
heat because a non-sorbing solute has a tendency to remain in the aqueous phase, whereas
thermal energy tends to preferentially transfer into the solid phase of the porous medium,
thus affecting the bulk temperature.
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2.12 Travel Time Probability

2.12.1 Definitions

Groundwater age is usually defined as a relative quantity with respect to a starting location
where age is assumed to be zero. For a given spatial position in the reservoir, the age (A)
relates to the time elapsed since the water particles entered the system at the recharge limits,
where age is zero. For the same spatial position, the life expectancy (E) is defined as the
time required for the water particles to reach an outlet limit of the system. Life expectancy
is therefore zero at an outlet. The total transit time (T) finally refers to the total time
required by the same water particles to migrate from an inlet zone (T = E) to an outlet zone
(T = A). The three variables A, E and T are random variables, characterized by probability
density functions (PDFs) gU=A,E,T , that can be regarded as the statistical occurrence of
water particles with respect to time, which could be observed in a groundwater sample if
any analytical procedure would allow such measurements.
The travel time probability gt(t,x | t0,xi) characterizes the probability density for the
amount of time (t is a random variable) required by the water particles to travel from a
given position xi (at time t = t0) to the position x. The location probability gx(x, t | xi, t0)
characterizes the probability density of finding water particles at the position x (x is a
random variable) at a given time t after their release at the position xi. If the input zone
corresponds to the entire inlet Γ−, then travel time corresponds to age A. Similarly, if
the input zone corresponds to the entire outlet Γ+, then travel time corresponds to life
expectancy E.
The age (and/or forward travel time) and life expectancy (and/or backward travel time)
PDFs can be obtained as solutions of advection-dispersion equations (ADE), by making use
of specific boundary conditions.

2.12.2 Basic equations

2.12.2.1 Forward model

The age PDF at a position x in an aquifer Ω can be evaluated by solving the ADE when a
unit pulse of conservative tracer is uniformly applied on the recharge area Γ− (see Fig. 2.4).
The resulting breakthrough curve is the probabilistic age distribution (Danckwerts, 1953;
Jury and Roth, 1990). The pre-solution of a velocity field is performed by solving the
groundwater flow equation. The age PDF is then obtained by solving the following forward
boundary value problem:

∂θg

∂t
= −∇ · qg +∇ · θD∇g + qIδ(t)− qOg in Ω (2.183a)

g(x, 0) = g(x,∞) = 0 in Ω (2.183b)
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J(x, t) · n = (q · n)δ(t) on Γ− (2.183c)

J(x, t) · n = 0 on Γ0 (2.183d)

where g(x, t) = gA(x, t) denotes the transported age PDF [T−1], q is the water flux vector
[LT−1], qI and qO are fluid source and sink terms, respectively [T−1], J(x, t) is the total age
mass flux vector [LT−2], D is the tensor of macro-dispersion [L2T−1], x = (x, y, z) is the
vector of Cartesian coordinates [L], t is time [T], θ = θ(x) is porosity or mobile water content
[−], n is a normal outward unit vector, and δ(t) is the time-Dirac delta function [T−1],
which ensures a pure impulse on Γ−. The total age mass flux vector J(x, t) is classically
defined by the sum of the convective and dispersive fluxes:

J(x, t) = qg(x, t)−D∇g(x, t) (2.184)

The third-type (Cauchy) boundary condition (2.183c) is the most meaningful condition to
simulate the age problem since it prevents backward losses by dispersion (homogeneity of
the condition at t = 0+).

2.12.2.2 Backward model

The life expectancy PDF satisfies the adjoint backward model of Eq. (2.183a):

∂θg

∂t
= ∇ · qg +∇ · θD∇g − qIg in Ω (2.185a)

g(x, 0) = g(x,∞) = 0 in Ω (2.185b)

J(x, t) · n = −(q · n)δ(t) on Γ+ (2.185c)

−D∇g(x, t) · n = 0 on Γ0 (2.185d)

where g(x, t) = gE(x, t) denotes the transported life expectancy PDF, and where the total
life expectancy mass flux vector J(x, t) is

J(x, t) = −qg(x, t)−D∇g(x, t) (2.186)

Eq. (2.185a) is the formal adjoint of Eq. (2.183a) (Garabedian, 1964; Arnold, 1974), known
as the ”backward-in-time” equation (Uffink, 1989; Wilson and Liu, 1997) or the backward
Kolmogorov equation (Kolmogorov, 1931). Given the forward equation, the backward
equation is technically obtained by reversing the sign of the flow field, and by adapting the
boundary conditions (Neupauer and Wilson, 1999, 2001). On the impermeable boundary Γ0,
a third-type condition (Cauchy) in the forward equation becomes a second-type condition
(Neumann) in the backward equation, and vice-versa. A second-type condition in the forward
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Figure 2.4: Schematic illustration of a groundwater reservoir Ω, with inlet (Γ−) and outlet
(Γ+) boundaries: (a) Age problem with normal flow field; (b) Life expectancy problem with
reversed flow field. The cross stands for a small water sample, to illustrate the random
variable total transit time (T) as the sum of the two random variables age (A) and life
expectancy (E).

model will also become a third-type condition in the backward model (Gardiner, 1983, p.
146). The advection term is known to be not self-adjoint (it should be written in the form
q · ∇g in Eq. (2.185a)) unless flow is non-divergent. However, the backward equation can
still handle divergent flow fields by means of the important sink term −qIg appearing in
Eq. (2.185a). This sink term has been derived in Cornaton (2003) from the vertical averaging
process of the general 3D backward ADE, and is consistent with the analysis of Neupauer
and Wilson (2001, 2002) and Wilson and Liu (1997). Recharge by internal sources (3D or
2D vertical) or by areal fluxes (fluid source for 2D horizontal) is introduced by the first-order
decay type term −qIg, which is a consequence of the reversed flow field. Internal sources
produce a sink of life expectancy probability, while internal sinks (term qOg in Eq. (2.183a))
do not appear in the backward model since a fluid sink may not influence the life expectancy
PDF.
The life expectancy to a specific outlet Γn ⊂ Γ+ can be calculated by modifying the boundary
value problem (2.185) in such a way that the function g will characterize the probability
density for the water particles to reach Γn, exclusively. This can be done by assuming a
maximum intensity of probability of exit at Γn (J(x, t) · n = −(q · n)δ(t)) and a minimum
intensity of probability of exit at each other outlet (J(x, t) · n = 0).

2.12.2.3 Total transit time

Since T = A+E, and since A and E are independent variables, the total transit time PDF
gT is obtained by the following convolution product:

gT (x, t) =
∫ t

0
gA(x, τ)gE(x, t− τ)dτ (2.187)
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The field of gT characterizes the evolution of groundwater particles throughout the aquifer
domain by specifying the amount of time from recharge to discharge. At a given position
in the reservoir, the temporal evolution of the groundwater particles can be characterized
by the three PDF’s gA, gE and gT . Each function contains specific information on a time
of residence, the nature of which is a function of the spatial references that are chosen for
evaluation. For instance, gA is conditioned by the inlet limit Γ−, where the variable A is nil,
while gE is conditioned by the outlet limit Γ+, where the variable E is nil. For the variable
T, the PDF gT is conditioned by the fact that T = A at outlet, and that T = E at inlet.

2.12.2.4 Outlet/Inlet Transit Time PDF

The representative transit time distribution ϕ(t) of the reservoir outlet zone can be defined as
a flux averaged concentration (Rubin, 2003), i.e., ϕ(t) is evaluated as the flow rate-normalized
sum on Γ+ of the total age mass flux response function J resulting from a unit flux impulse
on Γ−:

ϕ(t) = 1
F0

∫
Γ+

J · n dΓ (2.188)

where F0 denotes the total flow rate through Γ+. Similarly, the inlet transit time PDF ϕ(t)
is derived by enforcing Eq. (2.188) on the inlet boundary Γ−, given that the function J
represents the life expectancy mass flux.

2.12.2.5 Travel Time Probabilities

The forward and backward travel time probabilities are calculated as solutions of the following
forward and backward initial value problems:

∂θg

∂t
= −∇ · qg +∇ · θD∇g − qOg in Ω (2.189a)

g(x, 0) = δ(x− xi)
θ

in Ω (2.189b)

[qg(x, t)−D∇g(x, t)] · n = 0 on Γ− ∪ Γ0 (2.189c)

for the forward problem, and

∂θg

∂t
= ∇ · qg +∇ · θD∇g − qIg in Ω (2.190a)

g(x, 0) = δ(x− xi)
θ

in Ω (2.190b)
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[−qg(x, t)−D∇g(x, t)] · n = 0 on Γ+ (2.190c)

−D∇g(x, t) · n = 0 on Γ0 (2.190d)

for the backward problem. The variable xi denotes the location for the release of a unit
mass.
The forward and backward location probabilities [L−3] are then defined by:

gx(x, t) = θ(x)g(x, t) (2.191)

The forward and backward travel time probabilities [T−1] are defined by:

gt(t,x) = ‖q(x, t)‖A(x)g(t,x) (2.192)

where A(x) denotes the area of a control plane orthogonal to velocity, through which the
travel time probability is evaluated.

2.12.2.6 Age, Life Expectancy and Travel Time Statistics

Given an age/life expectancy/travel time PDF solution gt(t,x), the following descriptive
statistics can be post-processed (see Fig. 2.5)):

1. Mean age/life expectancy/travel time µ:

µ(x) =
∫ +∞

0
tgt(t,x)dt (2.193)

2. Standard deviation σ:

σ(x) =
√∫ +∞

0
t2gt(t,x)dt− µ2 (2.194)

3. Mode M(x).

2.12.2.7 Mean Age and Mean Life Expectancy Direct Solutions

Temporal moment equations can be derived from Eqs. (2.183) and (2.185). For instance, the
mean age equation is obtained by taking the first moment form of Eq. (2.183):

−∇ · q〈A〉+∇ · θD∇〈A〉 − qO〈A〉+ θ = 0 in Ω (2.195)
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Figure 2.5: Descriptive statistics on the travel time PDF.

where 〈A〉 denotes mean age. It requires the following boundary conditions:

〈A〉(x) = 0 on Γ− (2.196a)

J(x) · n = 0 on Γ0 (2.196b)

The mean life expectancy equation is similarly obtained by taking the first moment form of
Eq. (2.185):

∇ · q〈E〉+∇ · θD∇〈E〉 − qI〈E〉+ θ = 0 in Ω (2.197)

where 〈E〉 denotes mean life expectancy. It requires the following boundary conditions:

〈E〉(x) = 0 on Γ+ (2.198a)

−D∇〈E〉(x) · n = 0 on Γ0 (2.198b)

Mean age and mean life expectancy are continuously generated during groundwater flow,
since porosity θ = θ(x) acts as a source term in Eqs. (2.195) and (2.197). This source
term indicates that groundwater is aging one unit per unit time, in average. Finally, mean
total transit time (from inlet to outlet) can be obtained by taking the first moment form of
Eq. (2.187), yielding to 〈T 〉 = 〈A〉+ 〈E〉.
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2.12.2.8 Evaluating the travel time PDF from the travel time CDF

An alternative technique for the evaluation of the travel time PDF is to solve for the CDF,
which can be done by making use of the following forward and backward boundary value
problems:

∂θG

∂t
= −∇ · qG+∇ · θD∇G− qOG in Ω (2.199a)

G(x, 0) = 0 in Ω (2.199b)

[qG(x, t)−D∇G(x, t)] · n = q · n on Γ− (2.199c)

[qG(x, t)−D∇G(x, t)] · n = 0 on Γ0 (2.199d)

for the forward problem, and

∂θG

∂t
= ∇ · qG+∇ · θD∇G− qIG in Ω (2.200a)

G(x, 0) = 0 in Ω (2.200b)

[−qG(x, t)−D∇G(x, t)] · n = −q · n on Γ+ (2.200c)

−D∇G(x, t) · n = 0 on Γ0 (2.200d)

for the backward problem. The function G(x, t) is the forward (or backward) travel time
CDF, from which the travel time PDF g(x, t) can be deduced by enforcing:

g(x, t) = ∂G(x, t)
∂t

(2.201)

This formulation is more appropriate to account for transient velocity fields. Note that
the boundary conditions (2.199c) and (2.200c) may be replaced by the first-type condition
G(x, t) = 1. Note also that the n temporal moments µn of the travel time PDF can also be
directly calculated from the CDF by means of the following formula:

µn(x) =
∫ +∞

0
n tn−1(1−G(t,x))dt (2.202)
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2.12.2.9 Capture zone probability

The capture zone probability of a specific outlet can easily be calculated by adapting
Eq. (2.185) for the cdf of the life-expectancy-to-outlet Γn, pn(x, t) =

∫ t
0 g(x, u)du:

∂φpn
∂t

= ∇ · qpn +∇ · θD∇pn − qIpn in Ω (2.203a)

pn(x, 0) = 0 in Ω (2.203b)

[−qpn(x, t)−D∇pn(x, t)] · n = −q · n on Γn (2.203c)

[−qpn(x, t)−D∇pn(x, t)] · n = 0 on Γ+ (2.203d)

−D∇pn(x, t) · n = 0 on Γ0 (2.203e)

The field of pn(x, t) defines the probabilistic drainage basin corresponding to the outlet
Γn, or probabilistic capture zone relative to a particular transit time t. The ultimate, or
steady-state probabilistic drainage basin is the field p∞n (x) = pn(x,∞). Because in both
2D and 3D domains there is a non-zero probability that the water particles will not be
intercepted by the outlet Γn (the only location where this probability is zero), p∞n (x) is less
than one, p∞n (x) =

∫∞
0 g(x, t)dt < 1 ∀x ∈ Ω. An iso-probability value pn(x,∞) includes the

domain for which the fraction 1− pn(x,∞) of its water amounts will reach the outlet Γn,
sooner or later.
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Numerical Implementation

3.1 General

HydroGeoSphere uses the control volume finite element method to solve the flow equations
for all domains considered in a simulation, and it uses either the standard Galerkin finite
element method or the control volume finite element method to solve the transport equation.
Elements available to solve the 3-D porous medium and dual continuum equations are
rectangular prisms (8-node elements) and 3-D triangular prisms (6-node elements). The 2-D
fracture and surface equations are solved for using either rectangular (4-node elements) or
triangular elements (3-node elements) and the 1-D well, tile drain and channel equations are
solved for 1-D linear elements (2-node elements). For the 3-D and 2-D elements, a finite
difference approximation is also available, according to the method presented by Panday
et al. (1993).

The model solves either linear equations (for fully-saturated flow or solute transport) or
non-linear equations (for variably-saturated subsurface flow, surface flow, solute transport
with a flux-limiter, including density-dependent flow and transport). To solve the non-linear
equations, HydroGeoSphere uses the robust Newton-Raphson linearization method, except
for the weakly nonlinear density-dependent problem, which is solved by the Picard method.
Although the Newton-Raphson technique requires a larger amount of work for each solution
step compared to other linearization methods such as Picard iteration, the robustness and
higher order of convergence of the Newton method make it attractive.

The matrix equation arising from the discretization is solved by a preconditioned iterative
solver, using either the ORTHOMIN, GMRES, or BiCGSTAB acceleration.

In this chapter, we present the discretized equations and provide details on the various
solution schemes used by the model. We first present a general description of the control
volume finite element method used to discretize the governing equations. We then present
the discretized equations for subsurface and surface flow and for transport. We finally
present the solution method for non-linear equations.

62
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3.2 Control Volume Finite Element Method

The method of solution for the flow problem is based on the control volume finite element
approach (Forsyth, 1991) which has been shown to be particularly well-suited for a fast
and efficient implementation of the Newton–Raphson linearization technique (Forsyth and
Simpson, 1991).

The basic idea of the control volume finite element approach is to obtain a discretized equation
that mimics the governing mass conservation equation locally. A volume of influence, referred
to as a control volume, is assigned to each node. Figure 3.1 illustrates nodal control volumes
on the surface of a uniform triangular mesh. Each element that shares a node contributes
a portion of its volume to that node’s control volume. In general, an element defined on
n nodes contributes (1/n)th of its volume to each node’s control volume. The discretized
equation for a given node then consists of a term describing the change in fluid mass storage
for that volume which is balanced by the term representing the divergence of the fluid mass
flux in the volume. The fluid mass flux will depend on the physical properties associated
with the volume and the difference in the value of the primary variable between the node in
question and its neighbors.

Figure 3.1: Nodal control volumes on the surface of a uniform triangular mesh with nine
nodes (black disks) and eight elements. Black lines define element edges and red lines define
nodal control volume edges, which intersect at the centroid (hollow disks) of each element.

Discretization of the subsurface and the surface flow equations is identical except for the
difference in dimensionality. For the sake of clarity, we present here a detailed description
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of the control volume finite element method applied to discretize a simplified prototype
continuity equation. The final discretized equations for all subsurface domains and for
surface flow are then presented without providing the details of the derivation.

Let us assume the following prototype flow equation:

∂

∂t
(θsSw)−∇ · (K · kr∇h) +Q = 0 (3.1)

where h is the hydraulic head, equal to ψ + z.

Let Ni be the standard finite element basis functions such that:

Ni = 1 at node i
= 0 at all other nodes∑

j

Nj = 1 everywhere in the solution domain (3.2)

Using the standard basis function, an approximating function is defined in the usual way for
the spatially and temporally variable h and Sw:

h ' ĥ =
∑
j

Njhj(t)

Sw ' Ŝw =
∑
j

NjSwj(t) (3.3)

where j is a nodal index ranging from 1 to n, where n is the total number of nodes.

The standard Galerkin technique (see e.g., Huyakorn and Pinder (1983)) is used to discretize
Equation 3.1 over the domain of interest, V , leading to:∫

V

[
∂

∂t
(θsŜw)−∇ ·

(
K · kr∇ĥ

)
+Q

]
Ni dV = 0 (3.4)

where i is the nodal index ranging from 1 to total number of nodes. We now only consider the
equation applying to node i. Upon approximating the time derivative by a finite difference
representation and using a lumped mass approach to treat the storage terms in Equation 3.4,
we can write:

∫
v

∂

∂t
(θsŜw)Nidv = θs

(
ŜL+1
w − ŜLw

)
∆t

∫
v
Ni dv (3.5)

where v is the region or control volume associated with node i, L is the time level and ∆t
is the time-step size. Here, a fully implicit discretization in time is used. Likewise, for the
region v associated with node i, the source/sink term in Equation 3.4 becomes:

Qi =
∫
v
QNi dv (3.6)
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It is now desired to express the flux term in Equation 3.4 as a function of the total head
difference between node i and each of its neighbors. By applying the divergence theorem to
this term in Equation 3.4, one obtains:∫

v
−∇ ·

(
K · kr∇ĥ

)
Ni dv =

∫
v
∇Ni ·K · kr∇ĥ dv −

∫
B
q∗Ni dB (3.7)

The last term on the right-hand side is the integral of the fluid flux q∗ normal to the boundary,
B, of volume v. Let us assume for clarity that this fluid flux is zero. Use can be made of
Equation 3.3 to get:

∇Ni · ∇ĥ = ∇Ni · ∇

∑
j

hjNj

 (3.8)

where the summation is carried over all the nodes. Using the relation ∑Nj = 1. we have:

Ni = 1−
∑
j 6=i

Nj (3.9)

such that:

∇Ni = −∇
∑
j 6=i

Nj (3.10)

Using Equations 3.9 and 3.10, the right-hand side of Equation 3.8 can now be rewritten in
the following way:

∇Ni · ∇

∑
j

hjNj

 = ∇Ni · ∇

∑
j 6=i

hjNj

+∇ (hjNj)

= ∇Ni · ∇

∑
j 6=i

Nj

 (hj − hi) (3.11)

The relationship in Equation 3.11 is used to obtain:

∫
v
∇Ni ·K · kr∇ĥ dv =

∫
v
∇Ni ·K · kr∇

∑
j 6=i

Nj

 (hj − hi) dv (3.12)

Discretization of the domain into finite elements will create a nodal connectivity (i.e. a
table of nodal incidences for the elements). Defining ηi as being the set of nodes connected
to node i, it is obvious that the nodes not included in ηi will not contribute to the change
in storage or fluid flow at node i. Using this result from discretization and the fact that
the hj − hi are nodal quantities and that the summation and integration operations are
interchangeable, the right-hand side of Equation 3.12 becomes:

∫
v
∇Ni ·K · kr∇

∑
j 6=i

Nj

 (hj − hi) dv =
∑
j∈ηi

∫
v
∇Ni ·K · kr∇Nj (hj − hi) dv (3.13)
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Using the following relation:

γij =
∫
v
∇Ni ·K · ∇Nj dv (3.14)

the right-hand side of Equation 3.13 becomes:∑
j∈ηi

∫
v
∇Ni ·K · kr∇Nj (hj − hi) dv =

∑
j∈ηi

λij+1/2γij (hj − hi) (3.15)

where λij+1/2 represent a weighted value of the relative permeabilities for nodes i and j,
evaluated at the interface between nodal volumes i and j.

Combining Equations 3.5, 3.6 and 3.15, and using fully implicit time weighting, the final
form of the discretized equation for node i becomes:[

(θsSw)L+1
i − (θsSw)Li

] vi
∆t =

∑
j∈ηi

(λ)L+1
(ij+1/2)γij(h

L+1
j − hL+1

i ) +QL+1
i (3.16)

where superscript L denotes the time level and where the volume of influence for node i is
given by:

vi =
∫
v
Ni dv (3.17)

The discretized equation presented above is independent of the choice of element type. Of
the numerous types of three-dimensional elements that can be used to discretize the porous
blocks, both 8-node rectangular block elements (Huyakorn et al., 1986) and 6-node prism
elements are implemented here. The two-dimensional fracture planes and the surface flow
are discretized using either rectangular or triangular elements (Huyakorn et al., 1984). This
choice of simple elements allows use of the influence coefficient technique (Frind, 1982;
Huyakorn et al., 1984) to analytically evaluate the integrals appearing in Equation 3.14 in
an efficient manner.

3.3 Finite Difference Formulation

A finite difference representation in the numerical formulation of HGS is available using a
methodology identical to that described by Panday et al. (1993) and Therrien and Sudicky
(1996). The problem and boundary conditions are defined in terms of finite elements upon
input and new nodal connectivities are established when a finite difference formulation is
chosen for both 3-D block and prism elements. The influence coefficient matrices for the
finite element method, presented by Huyakorn et al. (1986), are manipulated in order to
mimic a finite difference discretization. The reader is referred to Panday et al. (1993) and
Therrien and Sudicky (1996) for details on the implementation. The finite difference form of
the needed influence coefficient matrices are provided in Huyakorn et al. (1986). Because of
the different number of nodal connections (i.e., 7 for finite difference, 27 for finite element
for block elements), the finite element method requires nearly four times as much memory
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to store the coefficient matrix compared to that for the finite difference method. For block
elements, the size of the assembled coefficient matrix is n× 27 for finite elements and n× 7
for finite differences, where n is the number of nodes in the domain. A variety of subsurface
flow simulations that we have performed for fractured porous media under either fully- or
variably-saturated conditions, have indicated that the finite difference and finite element
representations yield similar results. Also, experience has indicated that the CPU time
required when using the finite difference method is also nearly a factor of four less.

3.4 Discretized Subsurface Flow Equations

We now present the discretized flow equations for the porous medium, dual continuum, and
fracture domains. The discretized equations are similar in form to the discretized prototype
equation (3.16) and their derivation, not shown here, follows the steps highlighted in that
section.

3.4.1 Porous Medium

Using the control volume finite element method, with fully implicit time weighting, the
following discretized porous medium flow equation is obtained:[

(SsSwψ + θsSw)L+1
i − (SsSwψ + θsSw)Li

] wmvi
∆t =

∑
j∈ηi

(λ)L+1
(ij+1/2)γij(h

L+1
j − hL+1

i )−
(∑

ΓL+1
ex

)
vi ±QL+1

i (3.18)

where:

hi = ψi + zi (3.19)

and:

γij =
∫
v
∇Ni · wmK · ∇Nj dv (3.20)

for interpolation functions N defined for the 3-D porous medium elements and where the
3-D volume associated with a given node is given by:

vi =
∫
v
Ni dv (3.21)

For upstream weighting, the λij+1/2 values are given by:

λij+1/2 = krj if γij (hj − hi) > 0

λij+1/2 = kri if γij (hj − hi) < 0
(3.22)
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Upstream weighting of the relative permeability is highly recommended in order to ensure
monotonicity of the solution (Forsyth, 1991). A monotone solution will yield saturations
that always remain in the physical range, (i.e., between 0.0 and 1.0). Forsyth and Kropinski
(1997) provides a vivid illustration of the importance of the type of relative permeability
weighting on the quality and stability of the solution of Richards’ equation. They considered
a two-dimensional unsaturated flow problem in which the air entry pressure was low which
makes the governing equation more hyperbolic in nature. Results showed that the use of
central weighting produced significant negative saturations as the wetting front advanced in a
relatively dry soil; however, the solution was stable and remained in the physical range when
upstream weighting was used. Although it is well-known that the use of upstream weighting
for advection-dispersion problems can lead to excessive smearing of a concentration front,
its use in conjunction with hyperbolic-type equations, such as the one for variably-saturated
flow, does not smear as much because the solution is self-sharpening. It has also been shown
that, for purely hyperbolic equations, the use of central weighting can cause complete failure
of the solution (Sammon, 1988).

The reduction of area available for flow across a fracture-matrix interface can be easily
incorporated in Equation 3.18 in a manner suggested by Wang and Narasimhan (1985). The
area between nodes i and j, which are both located in the matrix, is imbedded in the γij
term, defined by Equation 3.20. For cases where i or j also coincide with a fracture node,
this area between the two nodes is multiplied by a factor representing the new effective area,
accounting for a matrix-matrix flow area reduction when the fracture desaturates.

It should also be noted that in the discretized Equation 3.18, the saturation term is
represented exactly and no use is made of the water capacity term which is known to induce
severe mass balance errors (Milly, 1985; Celia et al., 1990). Various schemes ranging in
complexity have therefore been derived to resolve this problematic mass balance error, e.g.,
(Cooley, 1983; Milly, 1985; Celia et al., 1990). In this work, the use of the Newton-Raphson
procedure allows a direct representation of the saturation term, thereby completely avoiding
the difficulties arising from the use of the water capacity term.

3.4.2 Discrete Fractures

The discretized 2-D equation for flow in fractures is:[
(Swf )L+1

i − (Swf )Li
] wfai

∆t =
∑
j∈ηf i

(λf )L+1
(ij+1/2)γf ij(hf

L+1
j − hfL+1

i ) + wfΓL+1
f ai (3.23)

where ηf i is the set of fracture nodes connected to fracture node i through the 2-D fracture
elements and where:

hf i = ψf i + zf i (3.24)

and:

γf ij =
∫
a
∇Ni · wfKf · ∇Nj da (3.25)
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with interpolation functions N defined for the 2-D fracture elements.

The 2-D area associated with a given fracture node is given by:

ai =
∫
a
Ni da (3.26)

For upstream weighting of relative permeabilities, the (λf )ij+1/2 values are given by:

(λf )ij+1/2 = krfj if γf ij

(
hf j − hf i

)
> 0

(λf )ij+1/2 = krfi if γf ij

(
hf j − hf i

)
< 0

(3.27)

3.4.3 Dual Continuum

Using the control volume finite element method, the discretized equation for flow in a dual
continuum is: [

(SsdSwdψd + θsdSwd)L+1
i − (SsdSwdψd + θsdSwd)Li

] wdvi
∆t =

∑
j∈ηid

(λd)L+1
(ij+1/2)γdij(hdj

L+1 − hdiL+1)−
[
ΓL+1
d +Qdi

L+1
]
vi (3.28)

where volume vi is defined for the dual continuum nodes, with an expression similar to
Equation 3.21 and where:

hdi = ψdi + zdi (3.29)

and:

γdij =
∫
v
∇Ni · wdKd · ∇Nj dv (3.30)

where the interpolation functions N are defined for the 3-D dual continuum elements.

For upstream weighting of relative permeabilities, the λdij+1/2 values are given by:

λdij+1/2 = kdrj if γdij
(
hdj − hdi

)
> 0

λdij+1/2 = kdri if γdij
(
hdj − hdi

)
< 0

(3.31)
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3.5 Discretized Surface Flow Equation

The discretized 2-D surface flow equation is:[
(ho)L+1

i − (ho)Li
] ai

∆t =
∑
j∈ηoi

(λo)L+1
(ij+1/2)γoij(ho

L+1
j − hoL+1

i ) + doΓL+1
o ai ± qoi (3.32)

where ηoi is the set of surface nodes connected to surface node i through the 2-D surface
elements and where:

hoi = doi + zoi (3.33)

and:

γoij =
∫
a
∇Ni ·Ko · ∇Nj da (3.34)

with interpolation functions N defined for the 2-D surface elements.

The 2-D area associated with a given surface node is given by:

ai =
∫
a
φoNi da (3.35)

For upstream weighting of surface pseudo relative permeabilities, the (λo)ij+1/2 values are
given by:

(λo)ij+1/2 = kroj if γoij
(
hoj − hoi

)
> 0

(λo)ij+1/2 = kroi if γoij
(
hoj − hoi

)
< 0

(3.36)

Careful consideration should be provided to implementing the conductances of the flow
terms of Equation 3.34. The conductance tensor Ko has two components in 2 dimensions,
Kox and Kox, which are combinations of the properties of the two nodes involved in the
respective flow connection. The constant part in Equations 2.50 and 2.51, constitutes the
frictional resistance term (1/nx and 1/ny for Manning, Cx and Cy for Chezy, or

√
8g/fx and√

8g/fy for Darcy-Weisbach, all referred to as Hx and Hy) and is an input parameter for
each element. The gradient part of Equations 2.50 and 2.51, [∂ho/∂s]−1/2, is calculated from
the average x- and y-direction gradients of the connecting cells, to determine the gradient in
the direction of maximum slope. The remaining terms in Equations 2.50 and 2.51, along with
the depth within the first gradient operator of Equation 2.53, combine to d5/3

o for Manning,
d

3/2
o for Chezy and d

3/2
o for Darcy-Weisbach. Full upstream weighting of this term between

the two connecting nodes ensures a monotonic solution, without unphysical oscillations.
Further, upstream weighting ensures that flow from a dry node is zero, maintaining the
physical reality to the set of governing equations.
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3.6 One-Dimensional Hydraulic Features

One-dimensional hydraulic features in HydroGeoSphere are used to simulate streams,
rivers, wells, water supply lines and gravity driven drains. Similar to surface/subsurface
flow, the 1D equations were discretized with a control volume finite element approach
combined with the Newton-Raphson successive linearization method to solve the discrete
set of nonlinear equations.

The governing equation for general one-dimensional flow can be written as:

L(h1D) = AfCs
∂h1D
∂t

+ ∂Af
∂t
− ∂

∂s

(
K1D

∂h1D
∂s

)
−Qwδ(s− sp)− Γexch (3.37)

K1D(h1D) = C ·Af · (RH)p ·
[
∂h1D
∂s

]q−1
(3.38)

where the change in water volume is expressed as a function of the compressibility coeffi-
cient (Cs) and the change in the flow area. The fluid exchange between the surrounding
environment and hydraulic feature is represented by Γexch.

The finite element analysis utilizes a trial solution for head, defined using the standard
interpolation functions and then a weighted residual at node i can be defined as the weighted
integral of the equation over the solution domain such that:

ĥ1D =
∑
j

Nj(h1D)j (3.39)

∫
R1
NiL(ĥ1D)dR1

=
∫
R1
Ni

[
ÂfCs

∂ĥ1D
∂t

+ ∂Âf
∂t
− ∂

∂s

(
K̂1D

∂ĥ1D
∂s

)
−Qwδ(s− sp)− Γ̂exch

]
dR1

= 0

(3.40)

Introducing the trial solution and using a lumped capacitance formulation:

Li

[
Af,iCs

∂h1D,i
∂t

+ ∂Af,i
∂t

]

=
∫
R1
Ni

 ∂
∂s

K̂1D
∂

∂s

∑
j

Njh1D,i

+Qwδ(s− sp) + Γ̂exch

 dR1

= −
∑
j

h1D,j

[∫
R1
K̂1D

∂Ni

∂s

∂Nj

∂s
dR1

]
− qδR1,i +Qw,i + Γ̂exch,i

(3.41)
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where:

Li

[
Af,iCs

∂h1D,i
∂t

+ ∂Af,i
∂t

]
≈
∫
R1
Ni

[
ÂfCs

∂ĥ1D
∂t

+ ∂Âf
∂t

]
dR1 (3.42)

qδR1,i = −
∫
δR1

Ni

(
K̂1D

∂ĥ1D
∂s

)
d(δR1) (3.43)

Qw,i =
∫
R1
NiQwδ(s− sp)dR1+

∫
R1
NiΓ̂exchdR1 (3.44)

Γ̂exch,i =
∫
R1
NiΓ̂exchdR1 (3.45)

Incorporating the properties of standard interpolation functions ∑iNj = 1 or Ni = 1 −∑
j 6=iNj , the discrete control volume one-dimensional flow equation is converted to the

following form:

Li

[
Af,iCs

∂h1D,i
∂t

+ ∂Af,i
∂t

]
=
∑
j 6=i

C1D,ij [h1D,j − h1D,i]− qδR1,i +Qw,i + Γ̂exch,i (3.46)

where:

C1D,ij =
∫
R1
K1D(hup,ij)

∂Ni

∂s

∂Nj

∂s
dR1 (3.47)

where the hydraulic properties (K1D) are determined by the upstream weighting method
determined by hup,ij = max (h1D,i, h1D,j).

3.7 Flow Coupling

The porous medium (and the dual continuum if present) is discretized in three dimensions with
either rectangular prisms or triangular prisms. Two-dimensional rectangular or triangular
elements represent the discrete fracture and the surface domains, and one-dimensional line
elements represent the wells and the tile drains. When discretizing the domain, nodes forming
the fracture or surface elements or nodes forming the well and tile drain elements have to
coincide with those on the adjacent porous medium finite volumes, similarly to Sudicky
et al. (1995). Because the fracture elements are generated such that they correspond to
planes that intersect three or 4 nodes in the three-dimensional rectangular blocks or prisms,
the nodes comprising the fracture elements are therefore common to nodes comprising the
porous matrix elements. The commonality of these nodes thus ensures the continuity of
hydraulic head at the fracture matrix interface. Also, by superimposing the contributions at
each node from both element types, there is no need to explicitly calculate the fluid leakage
terms appearing in the discretized equations. For the surface flow nodes, a choice of common
or dual nodes is offered, but the surface flow nodes nevertheless have to coincide with porous
medium nodes. Additionally, nodes forming the 3-D dual continuum domain coincide with
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the porous medium nodes, but they form duplicate nodes since the dual node approach is
used.

With the common node approach, the matrix contributions arising from the discretization of
the discrete fracture or the surface nodes, as well as matrix contributions from the well nodes
and tile drain nodes are superimposed onto those stemming from the discrete form of porous
medium equation. Continuity in pressure head is therefore ensured between the different
domains, which avoids the need for a direct evaluation of the exchange fluxes between the
porous medium elements and the other domains.

As an example, we write below the final discretized matrix equation when discrete fractures
are located in the porous domain. Using discretized Equation (3.23), we write the coupling
term Γf as:

wfΓL+1
f ai =

[
(Swf )L+1

i − (Swf )Li
] wfai

∆t − wf
∑
j∈ηf i

(λf )L+1
(ij+1/2)γf ij(hf

L+1
j − hfL+1

i ) (3.48)

Replacing the expression for the coupling term into porous medium Equation 3.18 gives the
following global equation:[

(SsSwψ + θsSw)L+1
i − (SsSwψ + θsSw)Li

] wmvi
∆t +

[
(Swf )L+1

i − (Swf )Li
] wfai

∆t =

∑
j∈ηi

(λ)L+1
(ij+1/2)γij(h

L+1
j − hL+1

i )−
(∑

ΓL+1
ex

)
vi ±QL+1

i +

wf
∑
j∈ηf i

(λf )L+1
(ij+1/2)γf ij(hf

L+1
j − hfL+1

i ) (3.49)

In Equation 3.49, we assume that hi = hf i for node that are common to the porous medium
and fracture domains, which ensures continuity. The exact value of the fluid exchange
between the domains, Γf , is therefore not computed explicitly prior to solution, but the
exchange can be back-calculated during post-processing of results by evaluating Equation 3.48
at the desired nodes.

Similarly to the approach shown here for superposition of 2 domains, the model allows
superposition of all flow domains by adding the relevant discretized equations and assuming
continuity of head.

In the next section, we present coupling for the dual node approach when subsurface and
surface flow equations are fully coupled. It is the only approach currently available for
coupling the porous medium and second subsurface continuum and it is one of the two
options available for coupling the porous medium and surface flow.

3.7.1 Dual-Continuum Subsurface Coupling

As mentioned previously, the porous medium equation is discretized everywhere for the 3-D
simulation grid. On the other hand, the dual continuum need not be present everywhere in the
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domain. When dual continuum is simulated, the discretized dual continuum Equation 3.28
is applied only to those grid nodes where dual continuum conditions exist. Because the
dual node approach is used to link the porous medium and the second continuum, the
dual continuum nodes have the same spatial coordinates than the porous medium nodes.
However, at a dual node, there are two unknowns to solve for: the total hydraulic head in
the porous medium (ψ + z) and that in the second continuum (ψd + zd). Fluid exchange
between the two domains is provided by the exchange term Ωd.

After the subsurface flow equations have been assembled into an implicit system of matrix
equations, the 3-D dual continuum flow equations are added to the matrix along with their
porous medium interactions, and the fully-integrated flow system is solved at each time
step.

3.7.2 Surface - Subsurface Coupling

The 2-D areal surface flow modules of HydroGeoSphere follow the same conventions
for spatial and temporal discretizations as those used by the subsurface modules. The
surface flow equation is solved on a 2-D finite-element mesh stacked upon a subsurface
grid when solving for both domains (i.e. the x- and y-locations of nodes are the same for
each layer of nodes), as shown in Figure 3.2. For superposition, the grid generated for the
subsurface domain is mirrored areally for the surface flow nodes, with surface flow node
elevations corresponding to the top elevation of the topmost active layer of the subsurface grid.
Note that surface flow node elevations may vary substantially to conform with topography.
However, the assumptions of small slope inherent in the diffusion-wave equation will not
allow for modeling of inertial effects.

Although Figure 3.2 uses 2-D rectangular elements on the surface and 3-D hexahedral
elements in the subsurface, HydroGeoSphere allows for the use of unstructured grids
composed of, for example, 2-D triangles on the surface and 3-D 6 node prismatic elements
in the subsurface.

The discretized surface Equation 3.32 is coupled with the 3-D subsurface flow Equation 3.18
via superposition (common node approach) or via leakage through a surficial skin layer
(dual node approach). For both approaches, fully implicit coupling of the surface and
subsurface flow regimes provides an integral view of the movement of water, as opposed
to the traditional division of surface and subsurface regimes. Flux across the land surface
is, therefore, a natural internal process allowing water to move between the surface and
subsurface flow systems as governed by local flow hydrodynamics, instead of using physically
artificial boundary conditions at the interface.

When the subsurface connection is provided via superposition, HydroGeoSphere adds the
surface flow equation terms for the 2-D surface mesh to those of the top layer of subsurface
nodes in a manner similar to that described in Section 3.7 for the common node approach.
In that case, the fluid exchange flux Γo, which contains leakance term Kso does not need to
be explicitly defined.

For subsurface connection via skin leakance, the dual node approach is used and each surface
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Figure 3.2: Spatial Discretization of the Surface Flow System and its Connection to the
Subsurface (adapted from Panday and Huyakorn (2004, Figure 5)).
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flow node communicates with the first active subsurface flow node directly beneath it to
form the subsurface connection. The subsurface flow connection term Kso must therefore be
added to the left hand side of the respective row for corresponding subsurface flow nodes,
in the column that connects them to the surface flow nodes. The interaction flux will also
be added to the right hand side of the subsurface flow Equation 3.18. After the subsurface
flow equations have been assembled into an implicit system of matrix equations, the 2-D
areal surface flow equations are added to the matrix along with their subsurface interactions,
and the fully-integrated flow system is solved at each time step. This provides significant
robustness and accuracy over flux linkage techniques, often used when conjunctive modeling
is required for the surface and subsurface regimes.

3.8 Flow Boundary Conditions

3.8.1 Subsurface Flow

Boundary conditions for subsurface flow include the following: first-type (Dirichlet) bound-
aries of prescribed hydraulic head, areal infiltration or recharge, source/sinks, evapotranspi-
ration and seepage faces.

The source/sink term in Equation 3.18 can be manipulated in order to impose prescribed head
boundary conditions (Forsyth, 1988; Forsyth and Kropinski, 1997). To assign a prescribed
pressure head, ψb, to a portion of the domain, the source/sink term becomes:

Qi = KijkrwWi(ψb − ψi) (3.50)

where Wi is a number large enough (e.g. 1020) to ensure that ψi = ψb when the assembled
system of equations for all nodes is solved. This can be viewed as injecting or withdrawing
sufficient fluid at node i to maintain the prescribed pressure head.

Seepage faces represent boundaries that require special treatment and a variety of methods
have been suggested to implement such boundaries (Neuman, 1973; Cooley, 1983). The
method used here is from Forsyth (1988) and requires that the approximate location of the
seepage face be known a priori. The appropriate form of the source/sink term at the nodes
forming the seepage face will be:

Qi = K∗krwWi (ψatm − ψi) ψi > ψatm

= 0 ψi < ψatm (3.51)

where K∗ is the component of the hydraulic conductivity tensor normal to the seepage face.
The above expression allows seepage only when the pressure in the medium is greater than
the atmospheric pressure, ψatm.

A free drainage boundary is often used for unsaturated flow conditions. It assumes that
a unit hydraulic gradient exists along the vertical direction, which results in the following
volumetric flow rate out of the domain:

Qi = KzzkrwAi (3.52)
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where Ai is the outflow area associated with node i where free drainage occurs.

Drain nodes can be used to simulate fluid flow out of the domain, but without allowing
inflow. For a given drain node i, the drain flow rate is given by

Qi = CDR(hi − hDR) hi > hDR

Qi = 0 hi ≤ hDR (3.53)
(3.54)

where CDR is an equivalent conductance [L2 T−1] for the drain node and hDR is the drain
hydraulic head.

River nodes can be used to simulate fluid flow into or out of the domain. For a given river
node i, the flow rate is given by:

Qi = CRIV (hi − hRIV ) (3.55)

where CRIV is an equivalent conductance [L2 T−1] for the river node and hRIV is the
river hydraulic head. Assuming the river bed acts as a semipervious layer, the equivalent
conductance CRIV is given by:

CRIV = KBED

LBED
WRCHLRCH (3.56)

where KBED is the river bed conductivity [L T−1], LBED is the river bed thickness [L],
WRCH is the width of the reach [L] and LRCH is the length of the reach [L].

3.8.2 Surface Flow

Boundary conditions to the surface flow system include the following: first-type (Dirichlet)
boundaries of prescribed water elevation, rainfall rate, source/sinks, evaporation, zero-depth
gradient and critical-depth conditions.

First-type boundary conditions are implemented in an identical manner to what is described
for subsurface flow in Section 3.8.1 above. Areal rainfall (volumetric inflow over an area) is
implemented as an input water flux multiplied by the contributing area. Sources/Sinks are
applied as net fluxes to the surface flow nodes that receive them. Sinks are constrained by
the physical property that water depth cannot be negative (i.e., water cannot be extracted
when the water level is below bed elevation). If this condition occurs at any solution iteration,
only as much water is withdrawn as to not violate this constraint. A further constraint
is that injection should also be restricted at sink nodes. Thus, the sink strength should
only reduce to zero under limited supply conditions and not become a negative sink (i.e., a
source). Evaporation is applied as an areal sink to an surface flow node, subject to similar
non-negative depth constraints as discussed for sinks, above.

Zero-depth gradient and critical depth boundary conditions are implemented to simulate
conditions at the lower boundaries of a hill slope. Zero-depth gradient (ZDG) condition
forces the slope of the water level to equal the bed slope which is provided by the user at
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this boundary. The discharge, Qo, at the zero-depth gradient boundary is given for the
Manning equation by

Qo = 1
ni
d5/3
o

√
So (3.57)

for the Chezy Equation by

Qo = Cid
3/2
o

√
So (3.58)

and for the Darcy-Weisbach relation by

Qo =
√

8g
fi
d3/2
o

√
So (3.59)

where Qo is the flux per unit width, i is the direction of the zero-depth gradient discharge
(i = x in the x-direction and i = y in the y-direction). ni is Manning roughness in the
direction i, Ci is the Chezy coefficient in direction i, fi is the friction factor along direction
i, and So is the bed slope at the zero-depth gradient boundary.

Critical depth (CD) condition forces the depth at the boundary to be equal to the critical
depth. The discharge Qo per unit width at the critical depth boundary is given by:

Qo =
√
gd3

o (3.60)

3.8.3 Interception and Evapotranspiration

3.8.3.1 Interception and Canopy Evaporation

For each time step ∆t, the canopy evaporation Ecan, actual interception storage Sint and
effective rainfall rate PEp are calculated with Equations 2.83, 2.84 and 2.89, respectively.
These parameters are calculated for surface elements for which a potential evapotranspiration
boundary condition has been specified. The calculated values are then redistributed over
the nodes that form these elements.

The effective rainfall rate for a given flux or rain boundary that also belongs to the
evapotranspiration domain is computed with the precipitation rate specified by the user.
For a given time step, the specified flux assigned to these boundaries is equal to the effective
rainfall rate rather than the specified precipitation rate, to account for water intercepted by
the canopy and canopy evaporation.

3.8.3.2 Surface and Subsurface Evapotranspiration

Evapotranspiration affects elements and nodes in both surface and subsurface flow domains
and may involve several layers of nodes. For each time step, the transpiration (Tp) at a
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given areal location is the sum of transpiration rates for nodes distributed at depth over the
effective root length

Tp =
nr∑
i=1

Tpi (3.61)

where nr is the number of nodes that lie within the depth interval 0 ≤ z ≤ Lr at the areal
location. The rate of transpiration Tpi for node i is calculated by substituting its nodal
water content θi and nodal time-varying root distribution function RDFi in Equations 2.90
to 2.95. The value of RDF at any areal location is typically equal to one but a smaller value
can be specified to account for ineffective roots.

Similarly to transpiration, the rate of subsurface evaporation Es at a given areal location is
calculated as the sum of the nodal evaporation rates (Esi) at depth according to

Es =
ne∑
i=1

Esi (3.62)

where ne is the number of nodes that lie between ground surface and the evaporation depth.
The nodal rate of evaporation Esi is calculated by substituting the nodal water content θi
in Equation 2.101 and the nodal evaporation distribution function EDFi in Equations 2.99,
2.102 and 2.103.

An appropriate value of EDFi for each nodal layer may be prescribed as a function of its
depth from land surface.

3.9 Elemental Velocities

Elemental velocities or fluid fluxes can be computed after solving for fluid flow. The fluid
flux is evaluated by combining its definition:

q = −K · kr∇(ψ̂ + z) (3.63)
with the definition of the interpolation function for the unknown. For pressure head, the
interpolation function is:

ψ̂ =
∑
j

Njψj(t)

The evaluation of elemental velocities or fluid fluxes is done according to the simple formulas
given by Huyakorn et al. (1986) for all types of 1-D, 2-D and 3-D elements available in the
model.

3.10 Discretized Solute Transport Equations

3.10.1 Porous Medium

When the transport equation is linear, which is the case except when a flux limiter is used
for the advective term in order to minimize adverse numerical dispersion, its solution is
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not as involved as that for the non-linear cases. We present here a discretization scheme
for the transport equations based on the control volume finite element method presented
in Section 3.2. The type of elements used for transport are identical to those used for the
flow problem and the choice of superposition of several domains (common node approach)
is also given, where elements representing one domain are superimposed onto the element
representing a second domain, as performed for the flow equation. This ensures the continuity
of concentration at the domain-to-domain interface and avoids the need to explicitly determine
the solute mass exchange terms involving Ωex in the governing transport equations. When a
dual continuum is simulated, the dual node approach is used to represent the interaction
between the porous medium and the dual continuum.

We present here the standard discretized equation for the 3-D porous medium, obtained
from the application of the control volume finite element method:[

(θsSwRC)L+1
i − (θsSwRC)Li

] wmvi
∆t =

∑
j∈ηi

(C)L+1
(ij+1/2)(λ)L+1

(ij+1/2)γij(h
L+1
j − hL+1

i )+

∑
j∈ηi

χij(CL+1
j − CL+1

i ) + (QiCups)L+1
i +

[
(RλCi)par − (θsSwRλC)i +

∑
ΩL+1

ex

]
vi (3.64)

where:

Cups = Ci if Qi < 0
= Cinflow if Qi > 0 (3.65)

and where Cinflow is the specified source inflow concentration (recall that Qi is the source/sink
term used to represent boundary conditions). Note that qL+1

(ij+1/2) = (λ)L+1
(ij+1/2)γij(h

L+1
j −

hL+1
i ) is the fluid flux at the interface between nodes i and j and is back-calculated from

the flow solution.

The term C(ij+1/2) in Equation 3.64 depends on the type of advective weighting used. For
central weighting:

C(ij+1/2) = Ci + Cj
2 (3.66)

Upstream weighting gives:

C(ij+1/2) = Cups = Cj if γij (hj − hi) > 0

C(ij+1/2) = Cups = Ci if γij (hj − hi) < 0
(3.67)

A TVD type flux limiter is also available to evaluate C(ij+1/2) according to (van Leer, 1974;
Unger et al., 1996):

C(ij+1/2) = Cups + σ(rij)
(
Cdwn − Cups

2

)
(3.68)
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where Cdwn is the concentration of the downstream node between i and j. The smoothness
sensor rij is given by:

rij =
(
Cups − Ci2ups
‖Pups − Pi2ups‖

)(
Cdwn − Cups
‖Pdwn − Pups‖

)−1

(3.69)

where Ci2ups is the second upstream node between i and j, and Pups, Pi2ups, Pdwn are the
position vectors of the upstream, second upstream and downstream nodes, respectively.

A van Leer flux limiter is used in Equation 3.68 such that:

σ(r) = 0 if r ≤ 0

σ(r) = (2r)/(1 + r) if r > 0
(3.70)

We further define:

χij = −
∫
v
∇Ni · θsSN+1

w D · ∇Nj dv (3.71)

Other terms in Equation 3.64 are as defined for the discrete flow Equation 3.18.

3.10.2 Discrete Fractures

The discretized 2-D transport equation in fractures is:[
(SwfRfCf )L+1

i − (SwfRfCf )Li
] wfai

∆t = wf
∑
j∈ηf i

Cf
L+1
(ij+1/2)λf

L+1
(ij+1/2)γf ij(hf

L+1
j − hfL+1

i )+

∑
j∈ηf i

χfij(CfL+1
j − CfL+1

i ) +
[(
RfλCf i

)
par
− (SwfRf λCf )i + ΩL+1

f

]
ai (3.72)

where:

χfij = −
∫
a
∇Ni · SN+1

wf Df · ∇Nj da (3.73)

and where the interface permeability can be either central or upstream weighted or given
by a TVD flux limiter, as shown for the porous medium equation in Section 3.10.1. Other
terms in Equation 3.72 are as defined for the discrete fracture flow Equation 3.23.

3.10.3 Double Porosity

The discrete equation for transport into the immobile region of a double-porosity domain is
given by: [

(θImmCImm)L+1
i − (θImmCImm)Li

] vi
∆t = ΩL+1

Immvi (3.74)
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3.10.4 Isotopic Fractionation

The discrete equation for isotopic fractionation into the immobile (solid) region is given by:

[
(CImm)L+1

i − (CImm)Li
] vi

∆t = ΩL+1
Imm
xr

vi (3.75)

3.10.5 Dual Continuum

For the dual continuum, the discretized 3-D transport obtained after using the control
volume finite element method is:[
(θsdSwdRdCd)L+1

i − (θsdSwdRdCd)Li
] wdvi

∆t =
∑
j∈ηdi

(Cd)L+1
(ij+1/2)(λd)

L+1
(ij+1/2)γdij(hd

L+1
j −hdL+1

i )+

∑
j∈ηdi

χdij(CdL+1
j − CdL+1

i ) + (QdCups)L+1
i +

[
(RdλdCdi)par − (θsdSwdRd λdCd)i + ΩL+1

d

]
vi

(3.76)

All terms in Equation 3.76 are defined in a manner analogous to the discretized porous
medium transport equation shown in Section 3.10.1.

3.10.6 Wells

One-dimensional transport along a well is described by the following discretized equation:[
(Cw)L+1

i − (Cw)Li
] πr2

s li
∆t =

∑
j∈ηwi

(Cw)L+1
(ij+1/2)(λw)L+1

(ij+1/2)γwij(hw
L+1
j − hwL+1

i )+

∑
j∈ηwi

χwij(CwL+1
j − CwL+1

i ) + (QwCups)L+1
i + πr2

s

[
(λCwi)par + ΩL+1

w

]
li (3.77)

All terms in Equation 3.77 are defined in a manner analogous to the discretized porous
medium transport equation shown in Section 3.10.1.

3.10.7 Tile Drains

One-dimensional transport in a tile drain is described by the following discretized equation:[
(Ct)L+1

i − (Ct)Li
] Ali

∆t =
∑
j∈ηti

(Ct)L+1
(ij+1/2)(λt)

L+1
(ij+1/2)γtij(ht

L+1
j − htL+1

i )+
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∑
j∈ηti

χtij(CtL+1
j − CtL+1

i ) + (QtCups)L+1
i +

[
A (λCti)par +AΩL+1

t

]
li (3.78)

All terms in Equation 3.78 are defined in a manner analogous to the discretized porous
medium transport equation shown in Section 3.10.1.

3.10.8 Surface runoff

For the surface flow domain, the governing transport equation is discretized as:[
(φohoRoCo)L+1

i − (φohoRoCo)Li
] ai

∆t =
∑
j∈ηoi

Co
L+1
(ij+1/2) · qo

L+1
(ij+1/2)

+
∑
j∈ηoi

χoij(CoL+1
j − CoL+1

i ) +
[
(φohoRoλCoi)par − (φohoRoλCo)i + ΩL+1

o

]
ai (3.79)

where:

χoij = −
∫
a
∇Ni · (φoho)N+1Do · ∇Njda (3.80)

and where the interface flux is obtained from the solution to the associated flow equation.
The term Co

L+1
(ij+1/2) may be treated in a mid-point or upstream weighted manner, or by

using the TVD flux limiter as discussed earlier in Section 3.10.1.

3.10.9 Channels

One-dimensional transport in a channel is described by the following discretized equation:[
(Cc)L+1

i − (Cc)Li
] Ali

∆t =
∑
j∈ηci

(Cc)L+1
(ij+1/2)(λc)

L+1
(ij+1/2)γcij(hc

L+1
j − hcL+1

i )+

∑
j∈ηci

χcij(CcL+1
j − CcL+1

i ) + (QcCups)L+1
i +

[
A (λCci)par +AΩL+1

c

]
li (3.81)

All terms in Equation 3.81 are defined in a manner analogous to the discretized porous
medium transport equation shown in Section 3.10.1.

3.10.10 Thermal Energy

The numerical implementation of variably-saturated subsurface thermal energy transport is
similar to that given by Graf (2005). The discrete form of equation 1 is given by:

Nn∑
J=1

TL+1
J

{∑
e

∫
V e

(
ρbcb
∆t wIwJ + (qiρwcw)wI

∂wJ
∂xi

+ (kb + ρbcbDij)
∂wI
∂xi

∂wJ
∂xj

)
dV e

}
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=
Nn∑
J=1

TLJ

{∑
e

∫
V e

ρbcb
∆t wIwJdV

e

}
+

Nn∑
J=1

{∑
e

∮
Γe

(
(kb + ρbcbDij)wI

∂T

∂n

)
dΓe

+
∑
e

∫
V e

(±QT )wIdV e +
∑
e

∫
Γb

ΩowIdΓb
}

i, j = 1, 2, 3 (3.82)

where Nn represents the total number of subsurface nodes, L represents the time level at
which a solution is known and L+ 1 represents the time level for which a solution is desired,∑
e represents the sum over all porous media elements connected to node J , Ve represents

the elemental volume, wI and wJ represent the linear basis functions following the Galerkin
approach, Γe represents the elemental boundary with n as the unit vector normal to the
boundary, and Γb represents the elemental boundary between the surface and subsurface
domains.

The numerical implementation of the surface thermal energy transport equation is similar
to that for the subsurface; however, the surface equation is depth-averaged and is thus
evaluated over the elemental area (Ae), not volume. In addition, the surface thermal energy
transport equation includes Eatm representing the atmospheric inputs to the surface thermal
energy system. The discrete equation for the surface regime is given by:
Non∑
J=1

TL+1
oJ

{∑
eo

∫
Ae

(
ρwcwdo

∆t wIwJ + (qoiρwcw)wI
∂wJ
∂xi

+ (kw + ρwcwDoij)do
∂wI
∂xi

∂wJ
∂xj

)
dAe

}

=
Non∑
J=1

TLoJ

{∑
eo

∫
Ae

(
ρwcwdo

∆t wIwJ

)
dAe

}
+

Non∑
J=1

{∑
eo

∮
Γe

(
(kw + ρwcwDoij)dowI

∂T

∂n

)
dΓe

+
∑
eo

∫
Ae

(Eatm ±QT )wIdAe +
∑
eo

∫
Γb

ΩodowIdΓb
}

i, j = 1, 2 (3.83)

where Non represents the number of overland flow nodes, and eo represents overland elements.

3.11 Travel Time Probability

Since the time-Dirac delta function δ(t) cannot properly be handled in the time domain, the
PDF’s are evaluated by solving initial value problems (cf Eqs. (2.189) and (2.190)). The
following summarizes the main operations implemented in FRAC3DVS:

1. The age/life expectancy/travel time are taken as specific non-reactive species.

2. The input mass is controlled by nodal influence volumes (times mobile water content),
according to Eq. (2.189b) or (2.190b). The injection point xi corresponds to any point
in the system for a travel time evaluation from xi to x, to any point on the recharge
area Γ− for the age problem, or to any point on the discharge area Γ+ for the life
expectancy problem.
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3. The travel time probability can be calculated:

• For each element: q(x, t) and g(x, t) are evaluated at the element centroid, using
element shape functions. The control plane section area A(x) is evaluated by
intersecting the plane normal to velocity with the corresponding element (see
Fig. 3.3).

• At each node: The Super-Convergent Patch Recovery method (SCPR, see
(Zienkiewicz and Zhu, 1992; Wiberg and Abdulwahab, 1997)) is used to evaluate
the nodal velocity (see Fig. 3.4). The fundamental basis of the SCPR method
is that there are specific locations in an element where the derivatives are more
accurate for a given polynomial degree. These particular locations are referred
to as element Super-Convergent points. The SCPR method can briefly be
summarized by the following:

– For a given node, a patch is made of neighboring elements (1D, 2D, 3D);
– Velocity is evaluated at some sample points within the patch. These sample

points correspond to a set of Gauss points;
– A least-square fit is performed through these samples, and the local problem

is solved with a Singular Value Decomposition Factorization solution method.

4. Travel time statistics are post-processed for each element (or node).
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Figure 3.3: Procedure for the evaluation of the travel time PDF at the element centroid, for
the case of a brick element.

Figure 3.4: Schematic illustration of SCPR method. Left: Four quadrangles defining a patch
of elements used to evaluate the velocity at a node (red circle), with indicated sample points
(+); Right: Example of a patch made of 8 brick elements.
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3.12 Solute Transport Coupling

Coupling of the various domains for solute transport is done in a manner similar to the
coupling used for fluid flow. When the common node approach is used, the discretized
equations for the coupled domains are added, and continuity of concentration is assumed
at the nodes shared by the coupled domains. The exchange term Ωex does not need to be
explicitly evaluated but can be back-calculated after solution.

For the dual node approach, currently available for coupling between the porous medium
and dual continuum domains, the exchange term is explicitly evaluated and there is no
assumption of equilibrium or continuity between the concentrations of the two domains. For
the dual continuum approach, the coupling term is evaluated according to:

ΩL+1
d vi =

[
−(umC)L+1

i − (udCd)L+1
i

]
vi (3.84)

When the dual-node approach is used to couple the surface and subsurface domains, the
coupling term may be expressed as:

ΩL+1
o = CL+1

ups Γo (3.85)

where CL+1
ups = CL+1

o when the flux is from the surface to the subsurface system and
CL+1
ups = CL+1 when the flux is from the subsurface to the surface system.

3.13 Solute Transport Boundary Conditions

3.13.1 Subsurface Transport

Boundary conditions for transport include the following: first-type (Dirichlet) boundaries,
second type (mass flux), third type (total flux) and each can be input as time-dependent
quantities.

Some input fluxes and boundary conditions for thermal energy transport were previously
incorporated into HydroGeoSphere by Graf (2005), such as the prescribed temperature
boundaries. Other thermal energy inputs were developed during this research; specifically
the temperature flux input and atmospheric inputs.

The temperature input flux is incorporated into HydroGeoSphere to account for the
thermal energy associated with incoming fluid flux. The temperature input flux can be used
in both the surface and subsurface domains. The general equation is given as:

Qheati = Q(ρincinTin − ρiciTi) (3.86)

where Qheati is the temperature flux into node i, Q is the volumetric flux of the carrier fluid,
ρ is the density, c is the heat capacity, T is the temperature, in denotes the input term, and
i denotes a nodal term. The density and heat capacity terms vary depending on the material
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associated with the node or input flux (bulk or water). A temperature flux associated with
surface water entering the surface domain (for example, a stream inlet) would use ρ and c
terms for water for both the input condition (incoming surface water), and the surface node
receiving the incoming fluid. However, the injection of heated water into the subsurface
would use ρ and c terms for water for the injected fluid, but would use bulk values for the
subsurface node.

The atmospheric temperature inputs implemented into HydroGeoSphere include prescribed
values (i.e. incoming shortwave radiation, air temperature, cloud cover, etc.) or values
determined by a sinusoidal input function. The addition of atmospheric inputs which can
vary sinusoidally with time allows for the representation of diurnal fluxes for air temperature,
shortwave radiation and wind speed.

3.14 Numerical Techniques

3.14.1 Matrix Solution

Discretized flow equations, such as Equations (3.18), (3.23), (3.28), (3.32), (3.46), or any
combination of these equations, forms a matrix system of the form:

Ax = b (3.87)

where x is the unknown, A is a matrix of coefficients and b is a force vector. When flow is
fully-saturated, the discretized equations are linear and the matrix of coefficient A is also
linear. A direct solution of the matrix equation is then possible. The resulting system of
equations can be very large for a fully three-dimensional field-scale problem. A fast and
efficient matrix solver is therefore critical in order to reduce core memory requirements and
CPU time. The preconditioned Krylov subspace iterative solver has been shown to be very
efficient and robust for solving large systems of equations (Behie and Forsyth, 1984) and
it has therefore been implemented to solve the system of equations. The preconditioning
chosen consists of performing an ILU decomposition of the assembled coefficient matrix
without altering its original sparsity pattern (Behie and Forsyth, 1984). The solver has the
capability, however, to perform a higher-order ILU decomposition of the coefficient matrix,
where additional steps of a Gaussian elimination are performed, resulting in the addition
of extra bands to the original matrix. Performing a higher-order decomposition results in
a better-conditioned decomposed matrix, which can improve the convergence rate of the
solver, but at the expense of increased storage requirements and additional computation
time.

An option to use either a finite difference or finite element discretization, as described
earlier, has also been implemented for the transport solution. Experience has indicated that
for discretely-fractured porous media in which the matrix has low permeability such that
mechanical dispersion in the matrix is weak relative to molecular diffusion, the finite element
and finite difference representations give essentially identical results. This suggests that the
cross-derivative terms in the transport equation are small compared to the terms that are
retained in the finite difference approach.
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As in the case of the flow problem, a mass balance is performed to assess the accuracy of
the solution. A procedure similar to that described by Huyakorn and Pinder (1983) is used.
The transport matrix equations are solved using the same ILU-preconditioned ORTHOMIN
solver (Behie and Forsyth, 1984) as is used for the flow problem.

3.14.2 Newton-Raphson Method

The Newton-Raphson technique is used to linearize the non-linear equations arising from
discretization of variably-saturated subsurface or surface flow equations. The method
is described in Huyakorn and Pinder (1983) and is reproduced here to demonstrate the
advantage of using the control volume finite element approach over a conventional Galerkin
method. To illustrate the method, we apply it to Equation 3.16, which is rewritten in the
following way:

f ri =
{

[θsSw]L+1
i − [θsSw]Li

} vi
∆t −

∑
j∈ηi

(λ)L+1
(ij+1/2)γij(h

L+1
j − hL+1

i )−QL+1
i (3.88)

where r represents the iteration level. Application of the Newton method to Equation 3.88
produces the following matrix equation:

F rij∆ψr+1
j = −f ri (3.89)

which can be solved with the same preconditioned iterative solver used for linear matrix
equations, since the Jacobian matrix Fij is linear.

In Equation 3.89, the Jacobian matrix, F rij , is defined as:

F rij = ∂f ri
∂ψrj

(3.90)

and vector f ri represents the residual of the discretized equation. The iteration process is
carried out repeatedly until the change in the pressure head, ∆ψr+1

j , or the residual of the
equation, f ri , becomes less than a specified tolerance at all the nodes. It is important that
the evolution of the residual, f ri , be monitored during iteration to ensure proper convergence.

Full Newton iteration can be computationally expensive mainly because of the need to
evaluate the Jacobian matrix. It is therefore highly desirable to implement a scheme capable
of evaluating it in an efficient manner. One option is to evaluate the Jacobian numerically
(Forsyth and Simpson, 1991; Forsyth and Kropinski, 1997). Term by term evaluation of the
Jacobian can be represented by (Forsyth and Kropinski, 1997):

∂f ri
∂ψri

≈ f ri (ψri + ε)− f ri (ψri )
ε

(3.91)

where ε represents a small numerical shift in the pressure head value.

Obviously, from Equation 3.91, numerical differentiation requires more than one function
evaluation for each term; however, it can be shown that not all terms in the Jacobian will
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require two function evaluations. The form of the discretized Equation 3.88 also makes it
intuitively easy to evaluate the Jacobian numerically. This is because the fluid flow terms
appearing in the summation in Equation 3.88 depend only on nodes i and j. Forsyth and
Simpson (1991) and Forsyth and Kropinski (1997) give a detailed procedure for the Jacobian
evaluation and it is reproduced below for completeness.

The diagonal term of the Jacobian for node i can be determined from Equations 3.88 and
3.90 as:

∂f ri
∂ψri

= ∂

∂ψri

{
[θsSw]ri − [θsSw]Li

} vi
∆t −

∑
J∈ηi

∂

∂ψri
(λ)r(ij+1/2)γij(hrj − hri ) −

∂Qri
∂ψri

(3.92)

The entries in column i of the Jacobian will be, excluding the diagonal:

Fji =
∂f rj
∂ψri

(3.93)

where j ∈ ηi. As stated previously, the only term in f rj depending on ψri will be the one
representing flow from node i to node j. Therefore:

∂f rj
∂ψri

= − ∂

∂ψri
(λ)r(ji+1/2)γji(hri − hrj) (3.94)

Because of local conservation of mass, the fluid flow term between i and j appearing in the
equation for node i will be similar to the one appearing in equation for node j. Therefore
we have:

λij = λji

γij = γji (3.95)
Using Equation 3.95, 3.94 becomes:

∂f rj
∂ψri

= ∂

∂ψri
(λ)r(ij+1/2)γij(hrj − hri ) (3.96)

The right hand side of Equation 3.96 is also found in the summation appearing in Equa-
tion 3.92. The expression for the diagonal term (Equation 3.92) can therefore be expressed
as:

∂f ri
∂ψri

= ∂

∂ψri

{
[θsSw]ri − [θsSw]Li

} vi
∆t −

∑
j∈ηi

∂f rj
∂ψri

− ∂Qri
∂ψri

(3.97)

which shows that the evaluation of the diagonal term for node i incorporates all the terms
appearing in column i of the Jacobian. The Jacobian can therefore be constructed by
only evaluating the diagonal terms and subsequently filling in the off-diagonal terms in a
column-wise fashion.

Forsyth and Simpson (1991) and Forsyth and Kropinski (1997) show that for n unknowns
and with the summation in Equation 3.88 extending from unity to ηi, the building of the
Jacobian requires n(2 + 2ηi) function evaluations. The Picard iteration scheme, on the other
hand, requires at least n(1+ηi) function evaluations to compute the residual, which is seen to
be only a factor of two less than the more robust Newton method. Numerical differentiation
is also attractive because it allows easy use of tabular data to represent arbitrary constitutive
relations should analytical expressions be unavailable.
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3.14.3 Primary Variable Substitution

Forsyth et al. (1995) discuss the use of a saturation based form of Equation 2.1 which has
good convergence properties in terms of nonlinear iterations when compared with a pressure
based method. Because this method cannot be used in the saturated zone they define a new
variable which is essentially the saturation in the unsaturated zone and the pressure head in
the saturated zone.

They use full Newton iteration to solve the discrete equation everywhere and, in the case
of a constant air phase pressure approximation, which applies here, they simply use a
different primary variable in different regions. Note that primary variables are regarded as
independent when constructing the Jacobian.

The primary variable at a given node may be switched after every Newton iteration using
the following method:

IF
Si > tolf Use ψi as primary variable at node i

ELSE IF
Si < tolb Use Si as primary variable at node i

ELSE
Do not change primary variable at node i

ENDIF

(3.98)

with the requirements that:

tolf < 1 (3.99)

and:

tolf 6= tolb (3.100)

3.14.4 Time Stepping

A variable time-stepping procedure similar to the one outlined by Forsyth and Sammon
(1986) and Forsyth and Kropinski (1997) has been incorporated in the solution procedure.
The time step is defined according to the rate of change of the solution unknown. For flow, the
rate of change of hydraulic head, pressure head or saturation can be chosen. For transport,
the rate of change of concentration or temperature is used for variable time-stepping.

Let’s assume that X represent one of the unknowns mentioned above. After obtaining the
solution at time level L, the next time-step is selected according to:

∆tL+1 = Xmax

max | XL+1
i −XL

i |
∆tL (3.101)
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where Xmax is a desired maximum change in the unknown during a single time-step, defined
by the user.

This implementation of variable time-stepping allows the use of increasingly larger time
steps if the dependent variable does not experience drastic changes. It is also recognized
that the number of Newton iterations taken to achieve convergence is a good indicator of
the suitability of the current time-step size. If the number of iterations exceeds a specified
maximum, ITmax, at time level L+ 1 in which the time step is currently ∆t, the solution is
restarted at time level L and the time-step is reduced, typically by a factor of two. Overall,
the procedure can lead to a very significant reduction in computational effort, especially
when the solution is desired only at a few widely-spaced target times (see Therrien and
Sudicky (1996)).

3.14.5 Mass Balance

Mass balance calculation are done by HydroGeoSphere after solving for fluid flow and
solute transport. The mass balance calculation gives information to the user on fluid flow
and solute exchange through external boundaries. It also provides information on the
accuracy of the numerical solution since the discretized flow and transport equations (for
example, Equations 3.18 and 3.64 for the porous medium) are in a mass conservative form
and are actually expressions for mass balance for the volume associated to a node in the
grid. These equations are assembled into a global matrix whose solution is obtained by
using iterative methods. Therefore, if the iterative process for solving the matrix converges
within a prescribed tolerance, mass balance for each equation should be ensured to the level
of precision of the convergence tolerance.

Mass balance for fluid flow and solute transport is performed by first computing the total
mass change in the domain for a given time step (for steady-state simulations, there is no
global mass change in the domain). The mass entering or leaving the domain through the
boundaries or through internal sources and sinks is then computed and is compared to the
total mass change, providing the mass balance check for the simulation. The procedure
used to compute the mass entering or leaving the domain is similar to that described in
Huyakorn and Pinder (1983) and involves reassembling the discretized equation for the
first-type nodes.

3.14.6 Solution Procedures

The solution methodology for 2-D areal surface flow is embedded into the time looping of
the solution methodology for the subsurface calculations of HydroGeoSphere (i.e., at
each iteration, assembly of the matrix of flow equations for the subsurface is followed by
assembly of its surface flow equations). The entire implicit system of matrix equations is
then solved at each nonlinear iteration until convergence before proceeding to the next time
step. Adaptive time-stepping, Newton-Raphson linearization, and under-relaxation formulas
used for the solution are discussed in Chapter 3 among the sections that document solution
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to the subsurface equations.
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Mathematical Notation

a Subsurface-macropore coupling, distance from block centre to fracture [L].
A Tile drain, cross-sectional area in the wetted portion [L2].
Af Cross sectional flow area [L2].
B Boundary of finite-element volume v [L].
Bf Uniform spacing for a set of parallel fractures [L].
BT Top width of 1-D channel flow [L].
C Subsurface, solute concentration [M L−3].

Variants:
Cd Dual continuum.
CImm Double-porosity immobile region.
Cf Fracture.
Co Surface (overland) flow.
Ct Tile drain.
CtInj Tile drain, injected water.
Cw Well.
CwInj Well, injected water.
Cc Channel.
CcInj Channel, injected water.

Cd Weir discharge coefficient [-].
Ch Chezy coefficient [L1/2 T−1].
Cdwn Concentration of downstream node between nodes i and j [M L−3].

Variants:
Cups Upstream node.
Ci2ups Second upstream node.

CL A constant which depends on rainfall intensity r [-].
Cx Chezy coefficient in the x-direction [L1/2 T−1].
Cy Chezy coefficient in the y-direction [L1/2 T−1].
D Subsurface, hydrodynamic dispersion tensor [L2 T−1].

Variants:
Dd Dual continuum.
Df Fracture.
Do Surface (overland) flow.

Dfree Solute, free-solution diffusion coefficient [L2 T−1].
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D∗Imm Double-porosity, effective diffusion coefficient in the immobile region [L2 T−1].
do Surface (overland) flow, water depth [L].
Dt Tile drain, dispersion coefficient [L2 T−1].
Dw Well, dispersion coefficient [L2 T−1].
ETS Surface water, evapotranspiration [L3 T−1].
ETG Subsurface water, evapotranspiration [L3 T−1].
F Jacobian matrix.
fs Fracture, spacing [L].
fx Darcy-Weisbach friction factor in the x-direction [-].
fy Darcy-Weisbach friction factor in the y-direction [-].
g Gravitational acceleration [L T−2].
h Subsurface, hydraulic head [L].

Variants:
hd Dual continuum.
hf Fracture.
ho Surface (overland) flow, water surface elevation.
hc Channel.
ht Tile drain.
hw Well.

Hd Surface (overland) flow, depression storage height [L].
Ho Surface (overland) flow, obstruction storage height [L].
Hs Surface (overland) flow, maximum height over which area covered by surface

water goes from 0 to unity [L].
ic Channel incision depth [L].
I Net infiltration [L3 T−1].
ITmax The maximum number of iterations allowed during a single time level.
I Identity tensor.
k Subsurface, permeability tensor [L2].
K Subsurface, saturated hydraulic conductivity tensor [L T−1].
K∗ Component of hydraulic conductivity tensor normal to a seepage face.
K ′ Subsurface, equilibrium distribution coefficient [M−1 L3].

Variants:
K ′d Dual continuum.
K ′f Fracture.

Ka Subsurface-macropore coupling, interface hydraulic conductivity [L T−1].
kd Dual continuum, permeability tensor [L2].
Kd Dual continuum, saturated hydraulic conductivity tensor [L T−1].
Kf Fracture, saturated hydraulic conductivity tensor[L T−1].
Ko Surface (overland) flow, conductance tensor[L T−1].
kdet First-order colloid detachment coefficient from the solid phase [T−1].

Variants:
kdetd Dual continuum.

kr Subsurface, relative permeability [-].
Variants:

krd Dual continuum.
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krf Fracture.
kro Surface (overland) flow.
krt Tile drain.
krw Well.

kra Subsurface-macropore coupling, interface relative permeability
[-].

kret First-order colloid retention coefficient on the solid phase [T−1].
Variants:

kretd Dual continuum.
krso Subsurface-surface (overland) flow coupling, rill effect term [-].
kt Coefficient for the solid phase transfer of colloids from

the porous medium domain to the dual domain [T−1].
K Bulk modulus of porous media [M T−2 L−1].
Kf Bulk modulus of fluid [M T−2 L−1].
Kss Bulk modulus of solids [M T−2 L−1].
Ks Surface flow, conductance term reduction factor [-].
Kso Subsurface-surface (overland) flow coupling, leakance term [T−1].
Kt Tile drain, hydraulic conductivity [L T−1].
Kw Well, saturated hydraulic conductivity [L T−1].
Kox Surface (overland) flow, conductance in x-direction [L T−1].
Koy Surface (overland) flow, conductance in y-direction [L T−1].
l Well or tile drain, length coordinate along the axis [L].
l′ Location at which specified well or tile discharge (or recharge) is applied [L].
lp Pore-connectivity parameter for unsaturated functions [-].
Ls Well, screen length [L].
N Finite element basis function [-].
n Manning roughness coefficient [T L−1/3].
n∗ Brooks-Corey exponent equal to 2 + 3λ∗ [-].
nx Manning roughness coefficient in the x-direction [L−1/3 T].
ny Manning roughness coefficient in the y-direction [L−1/3 T].
P Net precipitation [L3 T−1].
q Subsurface, fluid flux [L T−1].

Variants:
qd Dual continuum.
qf Fracture.
qo Surface (overland) flow.
qt Tile drain.
qw Well.

Pc Capillary pressure head [L].
Pdwn Position vector of downstream node between nodes i and j.

Variants:
Pups Upstream node.
Pi2ups Second upstream node.

Pw Well, wetted perimeter [L].
Pt Tile drain wetted perimeter [L].
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Q Subsurface, fluid source or sink [T−1].
Qc Channel, fluid source or sink [L3 T−1].
Qcd Dual continuum, solute source or sink [T−1].
Qd Dual continuum, fluid source or sink [T−1].
QWG Subsurface water, withdrawal [L3 T−1].
QG1 Subsurface water, inflow [L3 T−1].
QG2 Subsurface water, outflow [L3 T−1].
QGS Surface/subsurface water interactive flow [L3 T−1].
Qo Surface (overland) flow, volumetric flow rate per unit area representing external

source and sinks [L T−1].
QWS Surface water, withdrawal [L3 T−1].
QS1 Surface water, inflow [L3 T−1].
QS2 Surface water, outflow [L3 T−1].
Qt Tile drain, specified fluid flow rate in or out [L3 T−1], applied at location l′.
Qw Well, discharge (or recharge) per unit length [L2 T−1] applied at location l′.
r Rainfall intensity [L T−1].
R Subsurface, retardation factor [-].

Variants:
Rd Dual continuum.
Rf Fracture.
Ro Overland flow.
Rt Tile drain.

RH Hydraulic radius of 1-D flow [L].
r0 Double porosity, radius of a representative sphere [L].
rc Well, casing radius [L].
rs Well, screen radius [L].
Rei Reynolds number in coordinate direction i.
s Surface (overland) flow, coordinate along direction of maximum ground surface

slope [L].
Se Effective saturation [-].
Sfx Surface (overland) flow, friction slope in the x-direction [-].
Sfy Surface (overland) flow, friction slope in the y-direction [-].
Sox Surface (overland) flow, bed slope in the x-direction [-].
Soy Surface (overland) flow, bed slope in the y-direction [-].
Ss Subsurface, specific storage [L−1].
Ssf Fracture, specific storage [L−1].
Sw Subsurface, water saturation [-].

Variants:
Swd Dual continuum.
Swf Fracture.
Swt Tile drain.
Sww Well.

Swmax The maximum change in water saturation allowed during a single time-step.
Swr Residual water saturation [-].
t Time [T].
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tolb, tolf Switching parameters for primary variable substitution [-].
v Region or control volume associated with a node [L3].
V Volume of the finite-element domain [L3].
vio Surface (overland) flow, vertically averaged flow velocity in the coordinate

direction i [L T−1].
vxo Surface (overland) flow, vertically averaged flow velocity in the x-direction

[L T−1].
vyo Surface (overland) flow, vertically averaged flow velocity in the y-direction

[L T−1].
wd Dual continuum, volumetric fraction of the total porosity [-].
wf Fracture, aperture or width [L].
wm Subsurface, volumetric fraction of the total porosity [-].
W A large number, e.g., 1020.
x, y, z Global Cartesian coordinates [L].
xi Component of the Cartesian coordinate system [L].
z Subsurface, elevation head [L].

Variants:
zd Dual continuum.
zf Fracture.
zt Tile drain.
zw Well.

z′ Depth coordinate from the soil surface [L].
zo Overland flow, bed (land surface) elevation [L].
Zbank River bank elevation [L].
α Van Genuchten parameter [L−1].
αc Subsurface-surface coupling dispersivity [L].
αImm Double-porosity, first-order mass transfer coefficient between the mobile

and immobile regions [T−1].
αl Subsurface, longitudinal dispersivity [L].

Variants:
αld Dual continuum.

αs Subsurface-macropore coupling, first-order mass transfer [T−1].
αt Subsurface, transverse dispersivity [L].

Variants:
αtd Dual continuum.

αw Water, compressibility [L T2 M−1].
αm Matrix compressibility [L T2 M−1].
αss Solids compressibility [L T2 M−1].
αwd Subsurface-macropore coupling, first-order fluid exchange coefficient [L−1 T−1].
α∗wd Subsurface-macropore coupling, geometric factor [L−2].
α′ = 1−K/Ks [-].
β Van Genuchten parameter [-].
βd Subsurface-macropore coupling, geometrical factor [-].
βske Skempton’s coefficient [-].
γ Water, kinematic viscosity [L2 T−1].
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γij Term describing fluid flow between nodes i and j [L2 T−1].
Γex Subsurface, fluid exchange rate with all other domains [T−1].
Γd Dual continuum, fluid exchange rate with subsurface domain [T−1].

Variants:
Γf Fracture.
Γo Surface (overland) flow.
Γt Tile drain.
Γw Well.

γw Subsurface-macropore coupling, empirical constant [-].
δ Dirac delta function.
∆SG Subsurface, change in water storage [L3].
∆SS Surface flow, change in water storage [L3].
∆t Time step [T].
ε A small numerical shift in the pressure head value used in the Newton–

Raphson method.
ηi Subsurface, a set of nodes connected to node i.

Variants:
ηdi Dual continuum.
ηf i Fracture.
ηwi Well.
ηti Tile drain.

θ Subsurface, water content [-].
θImm Double-porosity, porosity of the immobile region [-].
θs Subsurface, saturated water content [-].

Variants:
θsd Dual continuum.

λ Subsurface, solute first-order decay constant [L−1].
Variants:

λd Dual continuum.
λf Fracture.
λo Surface (overland) flow.
λt Tile drain.
λw Well.

λ∗ Brooks-Corey pore-size index [-].
µ Water, viscosity [M L−1 T−1].
ν Van Genuchten parameter equal to 1− 1

β [-].
ν∗ Poisson’s ratio [-].
π The constant 3.1415. . ..
ψ Subsurface, pressure head [L].

Variants:
ψd Dual continuum.
ψf Fracture.
ψt Tile drain.
ψw Well.

ψatm Atmospheric pressure [L].



MATHEMATICAL NOTATION 106

ψb An assigned pressure head [L].
ρ Water, density [M L−3].
ρb Subsurface, bulk density [M L−3].

Variants:
ρbd Dual continuum.

σ(r) Van Leer flux limiter [-] with smoothness sensor r.
σzz Surface vertical stress [M T−2 L−1 ].
τ Subsurface, matrix tortuosity [-].

Variants:
τd Dual continuum.

φo Surface (overland) flow, surface porosity [-].
χ Water, surface tension [M T−2].
ωex Coefficient for liquid phase colloid exchange between

the porous medium and dual domains [T−1].
Ωex Subsurface, solute exchange rate with all other domains [T−1].
Ωd Dual continuum, solute exchange rate with subsurface domain [T−1].

Variants:
ΩImm Double-porosity immobile zone.
Ωf Fracture.
Ωo Surface (overland) flow.
Ωt Tile drain.
Ωw Well.

∇ One-dimensional gradient operator.
∇ Two-dimensional gradient operator.
∇ Three-dimensional gradient operator.
ζ Loading efficiency [-].
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Aquifer, see Porous medium
Aquitard, see Porous medium

Boundary conditions
flow

Evapotranspiration, 30, 78

Channels
numerical techniques

transport, 83
theory

transport, 42
Control volume finite-element method

numerical techniques, 63

Decay, see Radioactive decay
Discrete fractures

numerical techniques
flow, 68
transport, 81

theory
flow, 13
transport, 38

Double porosity transport
coupling, 43
numerical techniques, 81
theory, 39

Dual continuum
numerical techniques

flow, 69
flow coupling , 73
transport, 82

theory
flow, 14
flow coupling , 29

transport, 40
transport coupling , 44

Elemental velocities, 79

Finite difference formulation
numerical techniques, 66

Finite difference solution
theory, 62

Fractures, see Discrete fractures

Hydromechanical coupling
theory

flow, 15

Isotopic fractionation
transport coupling, 44

Isotopic fractionation transport
numerical techniques, 82
theory, 39

Mass balance
numerical techniques, 92

Matrix solver
numerical techniques, 88

Newton-Raphson method
numerical techniques, 89

Porous medium
numerical techniques

flow, 67
transport, 79

theory
flow, 10
transport, 37
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Primary variable substitution
numerical techniques, 91

Radioactive decay
theory, 37

Rill storage
theory, 21

Runoff
numerical techniques

flow, 70
transport, 83

theory
flow, 18
transport, 41

Solution procedures
numerical techniques, 92

Subsurface domain
numerical techniques

elemental velocities, 79
flow, 67
flow boundary conditions, 76
flow coupling, 72
transport boundary conditions, 87
transport coupling , 87
travel time probability , 84

theory
colloid transport, 45
flow boundary conditions, 29
transport boundary conditions, 45
transport coupling , 42–45
travel time probability, 54

Surface domain
boundary conditions

flow, 30, 77
transport, 45

numerical techniques
flow, 70

numerical techniques
flow coupling , 74

theory
rill storage, 21
transport coupling , 44
coupling, 29

Thermal energy
numerical techniques

transport, 83
transport coupling, 53

Tile drains
numerical techniques

transport, 82
theory

transport, 41
Time stepping, 2
Time stepping

adaptive
numerical techniques, 91

Wells
numerical techniques

transport, 82
theory

transport, 40
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